Article contents
Intracellular Traffic of Glucocorticoid Receptors: Studies With Green Fluorescent Protein Chimeras in Living Cells
Published online by Cambridge University Press: 02 July 2020
Extract
As ligand-regulated transcription factors, glucocorticoid receptors (GR) must traffic through the cytoplasm, traverse the nuclear pores, and subsequently traffic within the the nucleus to reach their target genes. Due to technical difficulties with immunocytology, little is known about the translocation process or the intranuclear localization. The recent characterization of a chromophore, green fluorescent protein (GFP), provided a general tool to fluorescently label proteins in living cells. With the development of a transcriptionally active GFP-GR chimera, it became possible to visualize GR translocation and intranuclear distribution in living cells.
This chimeric receptor was transiently transfected into mouse adenocarcinoma cells, allowing the direct visualization of GR using real-time video and confocal laser scanning microscopy. Mobility of GFP-GR was analyzed with fluorescent recovery after photobleaching (FRAP).
The hormone-free GFP-GR was localized in the cytoplasm figure 1). Dexamethasone (lOnM) initiated GFP-GR translocation into the nucleus (Figure 2 and 3). The translocation rate was dose- and temperature-dependent, and occurred in a pulsatile manner along cytoplasmic fibrillar structures (Figure 2). FRAP experiments showed that GFP-GR remained in motion within the nucleus after translocation.
- Type
- Cell Biology Applications of Green Fluorescent Protein and Other Vital Labeling Probes
- Information
- Microscopy and Microanalysis , Volume 3 , Issue S2: Proceedings: Microscopy & Microanalysis '97, Microscopy Society of America 55th Annual Meeting, Microbeam Analysis Society 31st Annual Meeting, Histochemical Society 48th Annual Meeting, Cleveland, Ohio, August 10-14, 1997 , August 1997 , pp. 131 - 132
- Copyright
- Copyright © Microscopy Society of America 1997
References
- 2
- Cited by