Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T15:45:19.816Z Has data issue: false hasContentIssue false

Interface Stoichiometry and Structure in Anodic Niobium Pentoxide

Published online by Cambridge University Press:  16 September 2008

Matthew J. Olszta
Affiliation:
Department of Materials Science and Engineering, Center for Dielectric Studies, and The Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
Elizabeth C. Dickey*
Affiliation:
Department of Materials Science and Engineering, Center for Dielectric Studies, and The Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

High-resolution transmission electron microscopy and electron energy loss spectroscopy (EELS) were performed on electrochemically anodized niobium and niobium oxide. Sintered anodes of Nb and NbO powders were anodized in 0.1 wt% H3PO4 at 10, 20, and 65 V to form surface Nb2O5 layers with an average anodization constant of 3.6 ± 0.2 nm/V. The anode/dielectric interfaces were continuous and the dielectric layers were amorphous except for occurrences of plate-like, orthorhombic pentoxide crystallites in both anodes formed at 65 V. Using EELS stoichiometry quantification and relative chemical shifts of the Nb M4,5 ionization edge, a suboxide transition layer at the amorphous pentoxide interface on the order of 5 nm was detected in the Nb anodes, whereas no interfacial suboxide layers were detected in the NbO anodes.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bach, D., Stormer, H., Schneider, R., Gerthsen, D. & Verbeeck, J. (2006). EELS investigations of different niobium oxide phases. Microsc Microanal 12(5), 416423.CrossRefGoogle ScholarPubMed
Bhide, V.G. & Bahl, M.K. (1973). X-ray K-absorption edge of niobium in some niobium compounds. J Phys C Solid State Phys 6(13), 22412248.CrossRefGoogle Scholar
Brauer, G. (1940). The oxides of columbium. Naturwissenschaften 28, 30.CrossRefGoogle Scholar
Burnham, J. (1967). A new property of etched niobium wet electrolytic capacitors. IEEE Trans Parts Mater Packag PMP3(1), 2125.CrossRefGoogle Scholar
Cabrera, N. & Mott, N.F. (1948). Theory of the oxidation of metals. Rep Prog Phys 12, 163184.CrossRefGoogle Scholar
Chandrashekhar, G.V., Moyo, J. & Honig, J.M. (1970). Electrical resistivity of NbO. J Solid State Chem 2(203), 528530.CrossRefGoogle Scholar
Chiou, Y.L. (1971). Note on thicknesses of anodized niobium oxide films. Thin Solid Films 8(4), R37.CrossRefGoogle Scholar
Dacca, A., Gemme, G., Mattera, L. & Parodi, R. (1998a). XPS analysis of the surface composition of niobium for superconducting RF cavities. Appl Surf Sci 126(3–4), 219230.CrossRefGoogle Scholar
Dacca, A., Gemme, G., Mattera, L. & Parodi, R. (1998b). XPS characterization of niobium for RF cavities. Part Acc 60(1–4), 103120.Google Scholar
Dalkaine, C.V., Desouza, L.M.M. & Nart, F.C. (1993). The anodic behavior of niobium. 1. The state-of-the-art. Corr Sci 34(1), 109115.CrossRefGoogle Scholar
Darlinski, A. & Halbritter, J. (1987a). Angle-resolved XPS studies of oxides at Nbn, Nbc, and Nb surfaces. Surf Interf Anal 10(5), 223237.CrossRefGoogle Scholar
Darlinski, A. & Halbritter, J. (1987b). On angle resolved X-ray photoelectron-spectroscopy of oxides, serrations, and protusions at interfaces. J Vac Sci Technol a-Vac Surf Films 5(4), 12351240.CrossRefGoogle Scholar
de Sairre, M.I., Bronze-Uhle, E.S. & Donate, P.M. (2005). Niobium(V) oxide: A new and efficient catalyst for the transesterification of beta-keto esters. Tetrahed Lett 46(15), 27052708.CrossRefGoogle Scholar
Dignam, M.J. (Ed.) (1981). Comprehensive Treatise of Electrochemistry. New York: Plenum Press.Google Scholar
Egerton, R.F. (1986). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York, London: Plenum Press.Google Scholar
Gray, K.E. (1975). ISS depth profile analysis of anodized niobium. Appl Phys Lett 27(8), 462464.CrossRefGoogle Scholar
Grundner, M. & Halbritter, J. (1980). XPS and AES studies on oxide-growth and oxide coatings on niobium. J Appl Phys 51(1), 397405.CrossRefGoogle Scholar
Grundner, M. & Halbritter, J. (1984). On the natural Nb2O5 growth on Nb at room-temperature. Surf Sci 136(1), 144154.CrossRefGoogle Scholar
Gubanov, V.A., Erbudak, M. & Kurmaev, E.Z. (1978). Photoemission and X-ray-emission spectra for niobium oxide. Inorg Nucl Chem Lett 14(2–3), 7578.CrossRefGoogle Scholar
Habazaki, H., Ogasawara, T., Konno, H., Shimizu, K., Nagata, S., Asami, K., Takayama, K., Skeldon, P. & Thompson, G.E. (2006). Suppression of field crystallization of anodic niobia by oxygen. J Electrochem Soc 153(5), B173B177.CrossRefGoogle Scholar
Habazaki, H., Ogasawara, T., Konno, H., Shimizu, K., Nagata, S., Skeldon, P. & Thompson, G.E. (2007). Field crystallization of anodic niobia. Corr Sci 49(2), 580593.CrossRefGoogle Scholar
Hahn, H. & Halama, H.J. (1976). AES depth profile measurements of niobium for superconducting cavities. J Appl Phys 47(10), 46294634.CrossRefGoogle Scholar
Halbritter, J. & Darlinski, A. (1987). Angle resolved XPS studies of oxides at Nb-, NbN-, NbC- and Nb3Sn-surfaces. IEEE Trans Magn 23(2), 13811384.CrossRefGoogle Scholar
Hand, R.B., Ling, H.W. & Kolski, T.L. (1961). Electrical characteristics of anodized niobium foil and sintered pellets. J Electrochem Soc 108(11), 10231028.CrossRefGoogle Scholar
Hornkjol, S. (1991). Anodic growth of passive films on niobium and tantalum. Electrochim Acta 36(9), 14431446.CrossRefGoogle Scholar
Kovacs, K., Kiss, G., Stenzel, M. & Zillgen, H. (2003). Anodic oxidation of niobium sheets and porous bodies heat-treatment of the Nb/Nb-oxide system. J Electrochem Soc 150(8), B361B366.CrossRefGoogle Scholar
Lakhiani, D.M. & Shreir, L.L. (1960). Crystallization of amorphous niobium oxide during anodic oxidation. Nature 188(4744), 4950.CrossRefGoogle Scholar
Li, Y.M. & Young, L. (2000). Niobium anodic oxide films: Effect of incorporated electrolyte species on DC and AC ionic current. J Electrochem Soc 147(4), 13441348.CrossRefGoogle Scholar
Lindau, I. & Spicer, W.E. (1974). Oxidation of Nb as studied by UV-photoemission technique. J Appl Phys 45(9), 37203725.CrossRefGoogle Scholar
Ling, H.W. & Kolski, T.L. (1962). Niobium solid electrolyte capacitors. J Electrochem Soc 109(1), 6970.CrossRefGoogle Scholar
Massalski, T.B. (1990). Binary Alloy Phase Diagrams. Materials Park, OH: ASM International.Google Scholar
Nagahara, K., Sakairi, M., Takahashi, H., Matsumoto, K., Takayama, K. & Oda, Y. (2007). Mechanism of formation and growth of sunflower-shaped imperfections in anodic oxide films on niobium. Electrochim Acta 52(5), 21342145.CrossRefGoogle Scholar
Norlin, A., Pan, J. & Leygraf, C. (2006). Fabrication of porous Nb2O5 by plasma electrolysis anodization and electrochemical characterization of the oxide. J Electrochem Soc 153(7), B225B230.CrossRefGoogle Scholar
Oechsner, H., Giber, J., Fusser, H.J. & Darlinski, A. (1985). Phase-transition and oxide dissolution processes in vacuum-annealed anodic Nb2O5/Nb systems. Thin Solid Films 124(3–4), 199210.CrossRefGoogle Scholar
Olszta, M.J., Wang, J. & Dickey, E.C. (2006). Stoichiometry and valence measurements of niobium oxides using electron energy-loss spectroscopy. J Microsc-Oxford 224, 233241.CrossRefGoogle ScholarPubMed
Pawel, R.E. & Campbell, J.J. (1964). Electron microscope observations of the crystallization of anodically formed tantalum and niobium oxide films. J Electrochem Soc 111(11), 12301234.CrossRefGoogle Scholar
Perriere, J., Rigo, S. & Siejka, J. (1978). Investigation of cation-transport processes during anodic-oxidation of duplex layers of tantalum on niobium by use of Rutherford backscattering and nuclear microanalysis. J Electrochem Soc 125(9), 15491557.CrossRefGoogle Scholar
Pozdeev, Y. (1998). Reliability comparison of tantalum and niobium solid electrolytic capacitors. Qual Reliab Eng Int 14(2), 7982.3.0.CO;2-Y>CrossRefGoogle Scholar
Schwartz, N., Gresh, M. & Karlik, S. (1961). Niobium solid electrolytic capacitors. J Electrochem Soc 108(8), 750758.CrossRefGoogle Scholar
Seybolt, A.U. (1963). Oxidation of metals. Adv Phys 12(45), 143.CrossRefGoogle Scholar
Stormer, H., Ivers-Tiffee, E., Schnitter, C. & Gerthsen, D. (2006). Microstructure and dielectric properties of nanoscale oxide layers on sintered capacitor-grade niobium and V-doped niobium powder compacts. Int J Mater Res 97(6), 794801.Google Scholar
Torrance, J.B., Lacorre, P., Asavaroengchai, C. & Metzger, R.M. (1991). Why are some oxides metallic, while most are insulating. Phys C 182(4–6), 351364.CrossRefGoogle Scholar
Young, L. (1960). Anodic oxide films on niobium—thickness, dielectric constant, dispersion, reflection minima, formation field strength, and surface area. Canad J Chem-Revue Canadienne De Chimie 38(7), 11411147.CrossRefGoogle Scholar
Ziolek, M. & Nowak, I. (2003). Characterization techniques employed in the study of niobium and tantalum-containing materials. Cat Today 78(1–4), 543553.CrossRefGoogle Scholar