Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T20:56:09.224Z Has data issue: false hasContentIssue false

Intelligent and Automatic Parameter Optimization for High-resolution Electron Ptychography

Published online by Cambridge University Press:  22 July 2022

Michael C. Cao
Affiliation:
Department of Materials Science and NanoEngineering, Rice University, Houston, TX, United States
Zhen Chen
Affiliation:
School of Materials Science and Engineering, Tsinghua University, Beijing, China
Yi Jiang*
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Lemont, IL, United States
Yimo Han*
Affiliation:
Department of Materials Science and NanoEngineering, Rice University, Houston, TX, United States
*
*Corresponding author: [email protected]
*Corresponding author: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Artificial Intelligence, Instrument Automation, And High-dimensional Data Analytics for Microscopy and Microanalysis
Copyright
Copyright © Microscopy Society of America 2022

References

Jiang, Yi, et al. Nature 559.7714 (2018), p. 343-349. doi:10.1038/s41586-018-0298-5CrossRefGoogle Scholar
Chen, Zhen, et al. Nature communications 11 (2020), p. 1-10. doi:10.1038/s41467-020-16688-6Google Scholar
Tate, Mark W., et al. Microscopy and Microanalysis 22.1 (2016), p. 237-249. doi:10.1017/S1431927615015664CrossRefGoogle Scholar
Bergstra, James, et al. Advances in neural information processing systems 24 (2011).Google Scholar
Zhang, Chenyu, et al. Microscopy and Microanalysis 27.S1 (2021), p. 810-812. doi:10.1017/S1431927621003214CrossRefGoogle Scholar
The authors acknowledge funding from the Welch Foundation (C-2065-20210327).Google Scholar