Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T19:35:03.403Z Has data issue: false hasContentIssue false

In-situ NiO nanostructure growth during heating in water vapor atmosphere

Published online by Cambridge University Press:  30 July 2021

Boyi Qu
Affiliation:
University of California, Davis, United States
Klaus van Benthem
Affiliation:
University of California, Davis, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Advanced Imaging and Spectroscopy for Nanoscale Materials Characterization
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Raynaud, G.M., Rapp, R.A., In situ observation of whiskers, pyramids and pits during the high-temperature oxidation of metals, Oxid. Met. 21 (1984) 89102. https://doi.org/10.1007/BF00659470.CrossRefGoogle Scholar
Koga, K., Hirasawa, M., Anisotropic growth of NiO nanorods from Ni nanoparticles by rapid thermal oxidation, Nanotechnology. 24 (2013) 375602. https://doi.org/10.1088/0957-4484/24/37/375602.Google ScholarPubMed
Matsuno, M., Bonifacio, C.S., Rufner, J.F., Thron, A.M., Holland, T.B., Mukherjee, A.K., van Benthem, K., In situ transmission electron microscopic investigations of reduction-oxidation reactions during densification of nickel nanoparticles, J. Mater. Res. 27 (2012) 24312440. https://doi.org/10.1557/jmr.2012.256.CrossRefGoogle Scholar
Railsback, J.G., Johnston-Peck, A.C., Wang, J., Tracy, J.B., Size-Dependent Nanoscale Kirkendall Effect During the Oxidation of Nickel Nanoparticles, ACS Nano. 4 (2010) 19131920. https://doi.org/10.1021/nn901736y.CrossRefGoogle ScholarPubMed