Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T14:43:28.071Z Has data issue: false hasContentIssue false

In-Depth Fluorescence Lifetime Imaging Analysis Revealing SNAP25A-Rabphilin 3A Interactions

Published online by Cambridge University Press:  06 November 2008

Jiung-De Lee
Affiliation:
Department of Medical Research and Education, Taipei Veterans General Hospital, National Yang-Ming University, Taipei 11217, Taiwan, Republic of China Institute of Biophotonics, School of Medical Technology and Engineering, National Yang-Ming University, Taipei 11217, Taiwan, Republic of China
Ping-Chun Huang
Affiliation:
Institute of Biophotonics, School of Medical Technology and Engineering, National Yang-Ming University, Taipei 11217, Taiwan, Republic of China
Yi-Cheng Lin
Affiliation:
Institute of Biophotonics, School of Medical Technology and Engineering, National Yang-Ming University, Taipei 11217, Taiwan, Republic of China
Lung-Sen Kao
Affiliation:
Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, Republic of China
Chien-Chang Huang
Affiliation:
Graduate Institute of Biochemistry, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
Fu-Jen Kao
Affiliation:
Institute of Biophotonics, School of Medical Technology and Engineering, National Yang-Ming University, Taipei 11217, Taiwan, Republic of China
Chung-Chih Lin
Affiliation:
Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, Republic of China
De-Ming Yang*
Affiliation:
Department of Medical Research and Education, Taipei Veterans General Hospital, National Yang-Ming University, Taipei 11217, Taiwan, Republic of China Institute of Biophotonics, School of Medical Technology and Engineering, National Yang-Ming University, Taipei 11217, Taiwan, Republic of China
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

The high sensitivity and spatial resolution enabled by two-photon excitation fluorescence lifetime imaging microscopy/fluorescence resonance energy transfer (2PE-FLIM/FRET) provide an effective approach that reveals protein-protein interactions in a single cell during stimulated exocytosis. Enhanced green fluorescence protein (EGFP)–labeled synaptosomal associated protein of 25 kDa (SNAP25A) and red fluorescence protein (mRFP)–labeled Rabphillin 3A (RPH3A) were co-expressed in PC12 cells as the FRET donor and acceptor, respectively. The FLIM images of EGFP-SNAP25A suggested that SNAP25A/RPH3A interaction was increased during exocytosis. In addition, the multidimensional (three-dimensional with time) nature of the 2PE-FLIM image datasets can also resolve the protein interactions in the z direction, and we have compared several image analysis methods to extract more accurate and detailed information from the FLIM images. Fluorescence lifetime was fitted by using one and two component analysis. The lifetime FRET efficiency was calculated by the peak lifetime (τpeak) and the left side of the half-peak width (τ1/2), respectively. The results show that FRET efficiency increased at cell surface, which suggests that SNAP25A/RPH3A interactions take place at cell surface during stimulated exocytosis. In summary, we have demonstrated that the 2PE-FLIM/FRET technique is a powerful tool to reveal dynamic SNAP25A/RPH3A interactions in single neuroendocrine cells.

Type
Multiphoton Microscopy–Special Section
Copyright
Copyright © Microscopy Society of America 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aikawa, Y., Lynch, K.L., Boswell, K.L. & Martin, T.F.J. (2006). A second SNARE role for exocytic SNAP25 in endosome fusion. Mol Biol Cell 17, 21132124.CrossRefGoogle ScholarPubMed
An, S.J. & Almers, W. (2004). Tracking SNARE complex formation in live endocrine cells. Science 306, 10421046.CrossRefGoogle ScholarPubMed
Axelrod, D. (2001). Total internal reflection fluorescence microscopy in cell biology. Traffic 2, 764774.CrossRefGoogle ScholarPubMed
Bai, J. & Chapman, E.R. (2004). The C2 domains of synaptotagmin-partners in exocytosis. Trends Biochem Sci 29, 143151.CrossRefGoogle ScholarPubMed
Becherer, U. & Rettig, J. (2006). Vesicle pools, docking, priming and release. Cell Tissue Res 326, 393407.CrossRefGoogle ScholarPubMed
Burré, J. & Volknandt, W. (2007). The synaptic vesicle proteome. J Neurochem 101, 14481462.CrossRefGoogle ScholarPubMed
Chang, C.C., Chu, J.F., Kao, F.J., Chiu, Y.C., Lou, P.J., Chen, H.C. & Chang, T.C. (2006). Verification of antiparallel G-quadruplex structure in human telomeres by using two-photon excitation fluorescence lifetime imaging microscopy of the 3,6-Bis(1-methyl-4-vinylpyridinium)carbazole diiodide molecule. Anal Chem 78, 28102815.CrossRefGoogle Scholar
Chen, Y., Mills, J.D. & Periasamy, A. (2003). Protein localization in living cells and tissues using FRET and FLIM. Differentiation 71, 528541.CrossRefGoogle ScholarPubMed
Deák, F., Shin, O.H., Tang, J., Hanson, P., Ubach, J., John, R., Rizo, J., Kavalali, E.T. & Südhof, T.C. (2006). Rabphilin regulates SNARE-dependent re-priming of synaptic vesicles from fusion. EMBO J 25, 28562866.CrossRefGoogle ScholarPubMed
Gratton, E., Breusegem, S., Sutin, J., Ruan, Q. & Barry, N. (2003). Fluorescence lifetime imaging for the two-photon microscope: Time-domain and frequency-domain methods. J Biomed Optics 8, 381390.CrossRefGoogle ScholarPubMed
Jackson, M.B. & Chapman, E.R. (2006). Fusion pores and fusion machines in Ca2+-triggered exocytosis. Ann Rev Biophys Biomol Struct 35, 135160.CrossRefGoogle ScholarPubMed
Lee, J.D., Chang, Y.F., Kao, F.J., Kao, L.S., Lin, C.C., Lu, A.C., Shyyu, B.C., Chiou, S.H. & Yang, D.M. (2008). Detection of the interaction between SNAP25 and rabphilin in neuroendocrine PC12 cells using the FLIM/FRET technique. Microsc Res Tech 71, 2634.CrossRefGoogle ScholarPubMed
Lin, C.C., Huang, C.C., Lin, K.H., Cheng, K.H., Yang, D.M., Tsai, Y.S., Ong, R.Y., Huang, Y.N. & Kao, L.S. (2007). Visualization of Rab3A dissociation during exocytosis: A study by total internal reflection microscopy. J Cell Physiol 211, 316326.CrossRefGoogle ScholarPubMed
Loranger, S.S. & Linder, M.E. (2002). SNAP-25 traffics to the plasma membrane by a syntaxin-independent mechanism. J Biol Chem 277, 3430334309.CrossRefGoogle Scholar
Martens, S., Kozlov, M.M. & McMahon, H.T. (2007). How synaptotagmin promotes membrane fusion. Science 316, 12051208.CrossRefGoogle ScholarPubMed
Medline, C., McDonald, A., Bergmann, A. & Duncan, R.R. (2007). Time-correlated single photon counting FLIM: Some considerations for physiologists. Micros Res Tech 70, 420425.CrossRefGoogle Scholar
Millington, M., Grindlay, G.J., Altenbach, K., Neely, R.K., Kolch, W., Bencina, M., Read, N.D., Jones, A.C., Dryden, D.T. & Magennis, S.W. (2007). High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein. Biophys Chem 127, 155164.CrossRefGoogle Scholar
Ostermeier, C. & Brunger, A.T. (1999). Structural basis of rab effector specificity: Crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A. Cell 96, 363374.CrossRefGoogle ScholarPubMed
Peter, M., Ameer-Beg, S.M., Hughes, M.K.Y., Keppler, M.D., Prag, S., Marsh, M., Vojnovic, B. & Ng, T. (2005). Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. Biophy J 88, 12241237.CrossRefGoogle ScholarPubMed
Piston, D.W. & Kremers, G.J. (2007). Fluorescent protein FRET: The good, the bad and the ugly. Trends Biochem Sci 32, 407414.CrossRefGoogle ScholarPubMed
Presley, J.F. (2005). Imaging the secretory pathway: The past and future impact of live cell optical techniques. Biochim Biophys Acta 1744, 259272.CrossRefGoogle ScholarPubMed
Rizo, J., Chen, X. & Arac, D. (2006). Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trend Cell Biol 16, 339350.CrossRefGoogle ScholarPubMed
Schneckenburger, H. (2005). Total internal reflection fluorescence microscopy: Technical innovations and novel applications. Curr Opin Biotech 16, 1318.CrossRefGoogle ScholarPubMed
Schneckenburger, H., Stock, K., Lyttek, M., Strauss, W.S.L. & Sailer, R. (2004). Fluorescence lifetime imaging (FLIM) of rhodamine 123 in living cells. Photochem Photobiol Sci 3, 127131.CrossRefGoogle ScholarPubMed
Shirataki, H., Kaibuchi, K., Sakoda, T., Kishida, S., Yamaguchi, T., Wada, K., Miyazaki, M. & Takai, Y. (1993). Rabphilin-3A, a putative target protein for smg p25A/rab3A p25 small GTP-binding protein related to synaptotagmin. Mol Cell Biol 13, 20612068.Google ScholarPubMed
Steyer, J.A. & Almers, W. (2001). A real-time view of life within 100 nm of the plasma membrane. Nat Rev Mol Cell Biol 2, 268275.CrossRefGoogle ScholarPubMed
Sugita, S. (2007). Mechanisms of exocytosis. Acta Physiologica 192, 185193. doi:10.1111/j.1748-1716.2007.01803.x.CrossRefGoogle ScholarPubMed
Treanor, B., Lanigan, P.M., Suhling, K., Schreiber, T., Munro, I., Neil, M.A., Phillips, D., Davis, D.M. & French, P.M. (2005). Imaging fluorescence lifetime heterogeneity applied to GFP-tagged MHC protein at an immunological synapse. J Microsc 217, 3643.CrossRefGoogle ScholarPubMed
Tsuboi, T. & Fukuda, M. (2005). The C2B domain of rabphilin directly interacts with SNAP-25 and regulates the docking step of dense core vesicle exocytosis in PC12 cells. J Biol Chem 280, 3925339259.CrossRefGoogle ScholarPubMed
Tsuboi, T., Kanno, E. & Fukuda, M. (2007). The polybasic sequence in the C2B domain of rabphilin is required for the vesicle docking step in PC12 cells. J Neurochem 100, 770779.CrossRefGoogle ScholarPubMed
Ubach, J., García, J., Nittler, M.P., Südhof, T.C. & Rizo, J. (1999). Structure of the Janus-faced C2B domain of rabphilin. Nat Cell Biol 1, 106112.CrossRefGoogle ScholarPubMed
Vogel, S.S., Thaler, C. & Koushik, S.V. (2006). Fanciful FRET. Sci STKE 331, re2.Google Scholar
Yang, D.M., Huang, C.C., Lin, H.Y., Tsai, D.P., Kao, L.S., Chi, C.W. & Lin, C.C. (2003). Tracking of secretory vesicles of PC12 cells using total internal reflection fluorescence microscopy. J Microsc 209, 223227.CrossRefGoogle ScholarPubMed