Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T19:37:00.219Z Has data issue: false hasContentIssue false

In Vitro Characterization of Multipotent Mesenchymal Stromal Cells Isolated from Palatal Subepithelial Tissue Grafts

Published online by Cambridge University Press:  21 February 2013

Alexandra Roman
Affiliation:
Department of Periodontology, Faculty of Dental Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 15 Victor Babeş St., 400012 Cluj-Napoca, Romania
Andrada Şoancă
Affiliation:
Department of Periodontology, Faculty of Dental Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 15 Victor Babeş St., 400012 Cluj-Napoca, Romania
Adrian Florea*
Affiliation:
Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur St., 400349 Cluj-Napoca, Romania
Emőke Páll
Affiliation:
Department of Veterinary Reproduction, Obstetrics and Gynecology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăştur St., 400372 Cluj-Napoca, Romania
*
*Corresponding author. E-mail: [email protected], [email protected]
Get access

Abstract

The aim of this study was to analyze whether the mesenchymal stromal cells (MSCs) isolated from palatal tissue grafts harvested in order to cover gingival recessions have the basic characteristics of stem cells. The palatal tissue cells were processed using a special culture medium that stimulated the development of only undifferentiated cellular lines. Cells at passage 4 were evaluated by flow cytometry to examine the expression of specific surface markers and were tested for multilineage differentiation capacity. These cells collected at passage 4 were also investigated for the capacity to cluster into embryoid body aggregates. Palatal MSCs displayed positive staining for the mesenchymal markers CD29, CD73, CD105, CD 49e, and CD44, but did not express hematopoietic markers CD34/45. The palatal MSCs successfully differentiated into osteogenic, adipogenic, and chondrogenic lineages. When seeded in special conditions, palatal MSCs propagated into unattached spheres resembling embryoid body aggregates consisting both of differentiated and undifferentiated cells as revealed at the ultrastructural evaluation. It is concluded that the isolated palatal MSCs fulfilled the basic criteria defining the stem cells. This new source of stem cells characterized here for the first time opens new perspectives on possible applications in basic research and in regenerative medicine.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al Battah, F., De Kock, J., Vanhaecke, T. & Rogiers, V. (2011). Current status of human adipose-derived stem cells: Differentiation into hepatocyte-like cells. Sci World J 11, 15681581.CrossRefGoogle ScholarPubMed
Aldahmash, A., Zaher, W., Al-Nbaheen, M. & Kassem, M. (2012). Human stromal (mesenchymal) stem cells: Basic biology and current clinical use for tissue regeneration. Ann Saudi Med 32, 6877.CrossRefGoogle ScholarPubMed
Al-Nbaheen, M., Vishnubalaji, R., Ali, D., Bouslimi, A., Al-Jassir, F., Megges, M., Prigione, A., Adjaye, J., Kassem, M. & Aldahmash, A. (2013). Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev Rep 9(1), 3243.CrossRefGoogle ScholarPubMed
Bailey, A.M., Kapur, S. & Katz, A.J. (2010). Characterization of adipose-derived stem cells: An update. Curr Stem Cell Res Ther 5, 95102.CrossRefGoogle ScholarPubMed
Bieback, K., Kern, S., Klüter, H. & Eichler, H. (2004). Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22, 625634.CrossRefGoogle ScholarPubMed
Caballero, M., Reed, C.R., Madan, G. & Van Aalst, J.A. (2010). Osteoinduction in umbilical cord- and palate periosteum-derived mesenchymal stem cells. Ann Plast Surg 64, 605609.CrossRefGoogle ScholarPubMed
Campagnoli, C., Roberts, I.A., Kumar, S., Bennett, P.R., Bellantuono, I. & Fisk, N.M. (2001). Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98, 23962402.CrossRefGoogle ScholarPubMed
Cardaropoli, D., Tamagnone, L., Roffredo, A. & Gaveglio, L. (2012). Treatment of gingival recession defects using coronally advanced flap with a porcine collagen matrix compared to coronally advanced flap with connective tissue graft: A randomized controlled clinical trial. J Periodontol 83, 321328.CrossRefGoogle Scholar
Charriere, G., Cousin, B., Arnaud, E., Andre, M., Bacou, F., Penicaud, L. & Casteilla, L. (2003). Preadypocite conversion to macrophage: Evidence of plasticity. J Biol Chem 278, 98509855.CrossRefGoogle ScholarPubMed
Colnot, C. (2011). Cell sources for bone tissue engineering: Insights from basic science. Tissue Eng Part B Rev 17, 449457.CrossRefGoogle ScholarPubMed
Coradeghini, R., Guida, C., Scanarotti, C., Sanguineti, R., Bassi, A.M., Parodi, A., Santi, P.L. & Raposio, E. (2010). A comparative study of proliferation and hepatic differentiation of human adipose-derived stem cells. Cell Tissue Organs 191, 466477.CrossRefGoogle ScholarPubMed
Denker, A.E., Nicoll, S.B. & Tuan, R.S. (1995). Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor-beta 1. Differentiation 59, 2534.CrossRefGoogle ScholarPubMed
Diss, A., Hitzig, C., Charbit, Y. & Salsou, B. (2003). Le point sur les facteurs de croissance dans la regeneration osseuse: Revue de literature. J Parodontol Implantol Orale 22, 519.Google Scholar
Doetschman, T.C., Eistetter, H., Katz, M., Schmidt, W. & Kemler, R. (1985). The in vitro development of blastocyst-derived embryonic stem cell lines: Formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87, 2745.Google ScholarPubMed
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D.J. & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315317.CrossRefGoogle ScholarPubMed
Estrela, C., De Alencar, A.H.G., Kitten, G.T., Vencio, E.F. & Gava, E. (2011). Mesenchymal stem cells in the dental tissues: Perspectives for tissue regeneration. Braz Dent J 22, 9198.CrossRefGoogle ScholarPubMed
Forcheron, F., Agay, D., Schetrhan, H., Riccobono, D., Herodin, F., Meineke, V. & Drouet, M. (2012). Autologous adipocyte derived stem cells favor healing in a minipig model of cutaneous radiation syndrome. PLoS One 7, e31694. CrossRefGoogle Scholar
Gronthos, S., Mankani, M., Brahim, J., Robey, P.G. & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSC) in vitro and in vivo . Proc Natl Acad Sci USA 97, 1362513630.CrossRefGoogle Scholar
Gronthos, S., Zannettino, A.C., Hay, S.J., Shi, S., Graves, S.E., Kortesidis, A. & Simmons, P.J. (2003). Molecular and cellular characterization of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116(Pt 9), 18271835.CrossRefGoogle ScholarPubMed
Hamid, A.A., Idrus Bt Hj, R., Bin Saim, A., Sathappan, S. & Chua, K.H. (2012). Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation. Clinics 67, 99106.CrossRefGoogle ScholarPubMed
Hayat, M.A. (2000). Principles and Techniques of Electron Microscopy—Biological Applications, 4th ed. Cambridge, UK: Cambridge University Press.Google Scholar
Haynesworth, S.E., Baber, M.A. & Caplan, A.I. (1992). Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal anti-bodies. Bone 13, 6980.CrossRefGoogle Scholar
Hürzeler, M.B. & Weng, D. (1999). A single-incision technique to harvest subepithelial connective tissue grafts from the palate. Int J Periodont Rest 19, 279287.Google ScholarPubMed
Hynes, K., Menicanin, D., Gronthos, S. & Bartold, P.M. (2012). Clinical utility of stem cells for periodontal regeneration. Periodontol 2000 59, 203227.CrossRefGoogle ScholarPubMed
In't Anker, P.S., Scherjon, S.A., Kleijburg-Van Der Keur, C., De Groot-Swings, G.M., Claas, F.H., Fibbe, W.E. & Kanhai, H.H. (2004). Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22, 13381345.CrossRefGoogle ScholarPubMed
Ivanovski, S., Gronthos, S., Shi, S. & Bartold, P.M. (2006). Stem cells in the periodontal ligament. Oral Dis 12, 358363.CrossRefGoogle ScholarPubMed
Izadpanah, R., Trygg, C., Patel, B., Kriedt, C., Dufour, J., Gimble, J.M. & Bunnell, B.A. (2006). Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 99, 12851297.CrossRefGoogle ScholarPubMed
Jang, S., Cho, H.H., Cho, Y.B., Park, J.S. & Jeong, H.S. (2010). Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol 11, 2530.CrossRefGoogle ScholarPubMed
Jeong, J.H. (2010). Adipose stem cells and skin repair. Curr Stem Cell Res Ther 5, 133140.CrossRefGoogle ScholarPubMed
Karaöz, E., Doğan, B.N., Aksoy, A., Gacar, G., Akyüz, S., Ayhan, S., Genç, Z.S., Yürüker, S., Duruksu, G., Demircan, P.C. & Sariboyaci, A.E. (2010). Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. Histochem Cell Biol 133, 95112.CrossRefGoogle ScholarPubMed
Karring, T., Nyman, S. & Lindhe, J. (1980). Healing following implantation of periodontitis affected roots into bone tissue. J Clin Periodontol 7, 96105.CrossRefGoogle ScholarPubMed
Kern, S., Eichler, H., Stove, J., Kluter, H. & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24, 12941301.CrossRefGoogle ScholarPubMed
Kurosawa, H. (2007). Methods for inducing embryoid body formation: In vitro differentiation system of embryonic stem cells. J Biosci Bioeng 103, 389398.CrossRefGoogle ScholarPubMed
Latif, N., Sarathchandra, P., Thomas, P.S., Antoniw, J., Batten, P., Chester, A.H., Taylor, P.M. & Yacoub, M.H. (2007). Characterization of structural and signaling molecules by human valve interstitial cells and comparison to human mesenchymal stem cells. J Heart Valve Dis 16, 5666.Google ScholarPubMed
Lindroos, B., Maenpaa, K., Ylikomi, T., Oja, H., Suuronen, R. & Miettinen, S. (2008). Characterisation of human dental stem cells and buccal mucosa fibroblasts. Biochem Biophys Res Commun 368, 329335.CrossRefGoogle ScholarPubMed
Mafi, R., Hindocha, S., Mafi, P., Griffin, M. & Khan, W.S. (2011). Sources of adult mesenchymal stem cells applicable for musculoskeletal applications—A systematic review of the literature. Open Orthop J 5(Suppl 2), 242248.CrossRefGoogle ScholarPubMed
Mara, C.S., Sartori, A.R., Duarte, A.S.S., Andrade, A.L.L., Pedro, M.A.C. & Coimbrs Ibsen, B. (2011). Periosteum as a source of mesenchymal stem cells: The effects of tcf-β on chondrogenesis. Clinics 66, 487492.CrossRefGoogle Scholar
Marconi, S., Castiglione, G., Turano, E., Bissolotti, G., Angiari, S., Farrinazzo, A., Costantin, G., Bedogni, G., Bedogni, A. & Bonetti, B. (2012). Human adiposed-derived mesenchymal stem cells sistemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush. Tissue Eng Part A 18, 12641272.CrossRefGoogle Scholar
Meirelles, I.D. & Nardi, N.B. (2009). Methodology, biology and clinical applications of mesenchymal stem cells. Front Biosci 14, 42814298.CrossRefGoogle ScholarPubMed
Miller, P.D. Jr. (1985). A classification of marginal tissue recession. Int J Periodont Rest 5, 813.Google ScholarPubMed
Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L.W., Robey, P.G. & Shi, S. (2003). SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100, 58075812.CrossRefGoogle ScholarPubMed
Morsczeck, C., Petersen, J., Vollner, F., Driemel, O., Reichert, T. & Beck, H.C. (2009). Proteomic analysis of osteogenic differentiation of dental follicle precursor cells. Electrophoresis 30, 11751184.CrossRefGoogle ScholarPubMed
Nomura, Y., Ishikawa, M., Yashiro, Y., Sanggarnjanavanich, S., Yamaguchi, T., Arai, C., Noda, K., Takano, Y., Nakamura, Y. & Hanada, N. (2012). Human periodontal ligament fibroblasts are the optimal cell source for induced pluripotent stem cells. Histochem Cell Biol 137, 719732.CrossRefGoogle ScholarPubMed
Nyman, S., Karring, T., Lindhe, J. & Planten, S. (1980). Healing following implantation of periodontitis-affected roots into gingival connective tissue. J Clin Periodontol 7, 394401.CrossRefGoogle ScholarPubMed
Obokata, H., Kojima, K., Westerman, K., Yamato, M., Okano, T., Tsuneda, S. & Vacanti, C.A. (2011). The potential of stem cells in adult tissues representative of the three germ layers. Tissue Eng Part A 17(5-6), 607615.CrossRefGoogle ScholarPubMed
O'Leary, T.J., Drake, R.B. & Nayor, J.E. (1972). The plaque control record. J Periodontol 43, 3841.CrossRefGoogle ScholarPubMed
Orciani, M., Mariggiò, M.A., Morabito, C., Di Benedetto, G. & Di Primio, R. (2010). Functional characterization of calcium-signaling pathways of human skin-derived mesenchymal stem cells. Skin Pharmacol Physiol 23, 124132.CrossRefGoogle ScholarPubMed
Park, J.C., Kim, J.M., Jung, I.H., Kim, J.C., Choi, S.H., Cho, C.S. & Kim, C.S. (2011). Isolation and characterization of human periodontal ligament (PDL) stem cells (PDLSCs) from the inflamed PDL tissue: In vitro and in vivo evaluations. J Clin Periodontol 38, 721731.CrossRefGoogle ScholarPubMed
Razzouk, S. & Schoor, R. (2012). Mesenchymal stem cells and their challenges for bone regeneration and osseointegration. J Periodontol 83, 547550.CrossRefGoogle ScholarPubMed
Rebelatto, C.K., Aguiar, A.M., Moretão, M.P., Senegaglia, A.C., Hansen, P., Barchiki, F., Oliveira, J., Martins, J., Kuligovski, C., Mansur, F., Christofis, A., Amaral, V.F., Brofman, P.S., Goldenberg, S., Nakao, L.S. & Correa, A. (2008). Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med (Maywood) 233, 901913.CrossRefGoogle ScholarPubMed
Roman, A., Soanca, A., Barbu-Tudoran, L., Irimie, A.I. & Pall, E. (2012). Comparative evaluation of the influence of two resin-based restorative materials on the behavior of progenitor-like cells. J Optoelectron Adv Mater 14, 491496.Google Scholar
Sachs, P.C., Francis, M.P., Zhao, M., Brumelle, J., Rao, R.R., Elmore, L.W. & Holt, S.E. (2012). Defining essential stem cell characteristics in adipose-derived stromal cells extracted from distinct anatomical sites. Cell Tissue Res 349(2), 505515.CrossRefGoogle ScholarPubMed
Seo, B.M., Miura, M., Gronthos, S., Bartold, P.M., Batouli, S., Brachim, J., Young, M., Robey, P.G., Wang, C.Y. & Shi, S. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364, 149155.CrossRefGoogle ScholarPubMed
Sonoyama, W., Liu, Y., Yamaza, T., Tuan, R.S., Wang, S., Shi, S. & Huang, G.T. (2008). Characterization of apical papilla and its residing stem cells from human immature permanent teeth: A pilot study. J Endod 34, 166171.CrossRefGoogle ScholarPubMed
Suchanek, J., Visek, B., Soukup, T., El-Din Mohamed, S.K., Ivancakova, R., Mokry, J., Aboul Ezz, E.H.A. & Omran, A. (2010). Stem cells from human exfoliated deciduous teeth—Isolation, long term cultivation and phenotypical analysis. Acta Med (Hradec Kralove) 53, 9399.CrossRefGoogle ScholarPubMed
Tanaka, K., Iwasaki, K., El Feghali, K., Komaki, M., Ishikawa, I. & Izumim, Y. (2011). Comparison of characteristics of periodontal ligament cells obtained from outgrowth and enzyme-digested culture methods. Arch Oral Biol 56, 380388.CrossRefGoogle ScholarPubMed
Teng, L. & Labosky, P.A. (2006). Neural crest stem cells. Adv Exp Med Biol 589, 206212.CrossRefGoogle ScholarPubMed
Torio-Padron, N., Huotari, A.M., Eisenhardt, S.U., Borges, J. & Stark, G.B. (2010). Comparison of pre-adipocyte yield, growth and differentiation characteristics from excised versus aspirated adipose tissue. Cell Tissue Organs 191, 365371.CrossRefGoogle ScholarPubMed
Traktuev, D.O., Merfeld-Clauss, S., Li, J., Kolonin, M., Arp, W., Pasqualini, R., Johnstone, B.H. & March, K.L. (2008). A population of multipostent CD 34-positive adipose stromal cells share pericyte and and mesenchymal surface markers, reside in a periendothelial location, and stabilized endothelial networks. Circ Res 102, 7785.CrossRefGoogle Scholar
Valorani, M.G., Montelatici, E., Germani, A., Biddle, A., D'Alessandro, D., Strollo, R., Patrizi, M.P., Lazzari, L., Nye, E., Otto, W.R., Pozzilli, P. & Alison, M.R. (2012). Pre-culturing human adipose tissue mesenchymal stem cells under hypoxia increases their adipogenic and osteogenic differentiation potentials. Cell Prolif 45, 225238.CrossRefGoogle ScholarPubMed
Vishnubalaji, R., Al-Nbaheen, M., Kadalmani, B., Aldahmash, A. & Ramesh, T. (2012a). Comparative investigation of the differentiation capability of bone-marrow- and adipose-derived mesenchymal stem cells by qualitative and quantitative analysis. Cell Tissue Res 347, 419427.CrossRefGoogle ScholarPubMed
Vishnubalaji, R., Al-Nbaheen, M., Kadalmani, B., Aldahmash, A. & Ramesh, T. (2012b). Skin-derived multipotent stromal cells—An archrival for mesenchymal stem cells. Cell Tissue Res 350, 112.CrossRefGoogle ScholarPubMed
Watt, I.M. (2003). The Principles and Practice of Electron Microscopy. Cambridge UK: Cambridge University Press.Google Scholar
Wetterau, M., Szpalski, C., Hazen, A. & Warren, S.M. (2012). Autologous fat grafting and facial reconstruction. J Craniofac Surg 23, 315318.CrossRefGoogle ScholarPubMed
Widera, D., Grimm, W.D., Moebius, J.M., Mikenberg, I., Piechaczek, C., Gassmann, G., Wolff, N.A., Thevenod, F., Kaltschmidt, C. & Kaltschmidt, B. (2007). Highly efficient neural differentiation of human somatic stem cells, isolated by minimally invasive periodontal surgery. Stem Cells Dev 16, 447460.CrossRefGoogle ScholarPubMed
Widera, D., Zander, C., Heidbreder, M., Kasperek, Y., Noll, T., Seitz, O., Saldamli, B., Sudhoff, H., Sader, R., Kaltschmidt, C. & Kaltschmidt, B. (2009). Adult palatum as a novel source of neural crest-related stem cells. Stem Cells 27, 18991910.CrossRefGoogle ScholarPubMed
Williams, J.T., Southerland, S.S., Souza, J., Calcutt, A.F. & Cartledge, R.G. (1999). Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg 65, 2226.CrossRefGoogle ScholarPubMed
Yoshimura, K., Sato, K., Aoi, N., Kurita, M., Inoue, K., Suga, H., Eto, H., Kato, H., Hirohi, T. & Harii, K. (2008). Cell-assisted lipotransfer for facial lipoatrophy: Efficacy of clinical use of adiposed-derived stem cells. Dermatol Surg 34, 11781185.Google Scholar
Zhu, H., Mitsuhashi, N., Klein, A., Barsky, L.W., Weinberg, K., Barr, M.L., Demetriou, A. & Wu, G.D. (2006). The role of the hyaluronian receptor CD44 in mesenchymal stem cell migation in the extracellular matrix. Stem Cells 24, 928935.CrossRefGoogle Scholar
Zuk, P.A. (2008). Tissue engineering craniofacial defects with adult stem cells? Are we ready yet? Pediatr Res 63, 478486.CrossRefGoogle ScholarPubMed
Zuk, P.A., Zhu, M., Ashijian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P. & Hedrick, M.H. (2002). Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13, 42794295.CrossRefGoogle ScholarPubMed
Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P., Hedrick, M.H. (2001). Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng 7, 211228.CrossRefGoogle ScholarPubMed
Zvaifler, N.J., Marinova-Mutafchieva, L., Adams, G., Edwards, C.J., Moss, J., Burger, J.A. & Maini, R.N. (2000). Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2, 477488.CrossRefGoogle ScholarPubMed