Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T17:23:10.023Z Has data issue: false hasContentIssue false

In Situ Thermomechanical Loading for TEM Studies of Nanocrystalline Alloys

Published online by Cambridge University Press:  30 July 2021

Thomas Koenig
Affiliation:
University of Alabama, United States
Hongyu Wang
Affiliation:
North Carolina State University, United States
Kayla Cole-Piepke
Affiliation:
University of Alabama, United States
Alicia Koenig
Affiliation:
The University of Alabama, United States
Sourav Garg
Affiliation:
University of Alabama, United States
Garritt Tucker
Affiliation:
Colorado School of Mines, United States
Patrick Kung
Affiliation:
University of Alabama, United States
Tim Mewes
Affiliation:
The University of Alabama, United States
Claudia Mewes
Affiliation:
University of Alabama, United States
John Nogan
Affiliation:
Sandia National Laboratories, United States
Yong Zhu
Affiliation:
North Carolina State University, United States
Gregory Thompson
Affiliation:
The University of Alabama, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Investigating Phase Transitions in Functional Materials and Devices by In Situ/Operando TEM
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Zhu, Y. et al. A review of microelectromechanical systems for nanoscale mechanical characterization, J. Micromech. Microeng. 25 (2015) 093001. https://doi.org/10.1088/0960-1317/25/9/093001.CrossRefGoogle Scholar
Chang, T.-H. et al. A microelectromechanical system for thermomechanical testing of nanostructures, Appl. Phys. Lett. 103 (2013) 263114. https://doi.org/10.1063/1.4858962.CrossRefGoogle Scholar
Gupta, S. et al. Improved very high cycle bending fatigue behavior of Ni microbeams with Au coatings, Acta Materialia. 161 (2018) 444455. https://doi.org/10.1016/j.actamat.2018.09.037.CrossRefGoogle Scholar
Zhu, Y. et al. An electromechanical material testing system for in situ electron microscopy and applications, Proceedings of the National Academy of Sciences. 102 (2005) 1450314508. https://doi.org/10.1073/pnas.0506544102.CrossRefGoogle ScholarPubMed
Zhu, Y., Moldovan, N. et al. A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures, Appl. Phys. Lett. 86 (2005) 013506. https://doi.org/10.1063/1.1844594.CrossRefGoogle Scholar
Cheng, G. et al. Anomalous Tensile Detwinning in Twinned Nanowires, Phys. Rev. Lett. 119 (2017) 256101. https://doi.org/10.1103/PhysRevLett.119.256101.CrossRefGoogle ScholarPubMed
Cheng, G. et al. In-situ TEM study of dislocation interaction with twin boundary and retraction in twinned metallic nanowires, Acta Materialia. 196 (2020) 304312. https://doi.org/10.1016/j.actamat.2020.06.055.CrossRefGoogle Scholar
Cheng, G. et al. In Situ Nano-thermomechanical Experiment Reveals Brittle to Ductile Transition in Silicon Nanowires, Nano Lett. 19 (2019) 53275334. https://doi.org/10.1021/acs.nanolett.9b01789.Google ScholarPubMed
Chen, C.-H. et al. Electrical breakdown phenomena for devices with micron separations, J. Micromech. Microeng. 16 (2006) 13661373. https://doi.org/10.1088/0960-1317/16/7/034.CrossRefGoogle Scholar
Nakao, S. et al. Mechanical properties of a micron-sized SCS film in a high-temperature environment, J. Micromech. Microeng. 16 (2006) 715720. https://doi.org/10.1088/0960-1317/16/4/007.Google Scholar