Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T20:49:52.690Z Has data issue: false hasContentIssue false

In Situ TEM Imaging of Defect Dynamics under Electrical Bias in Resistive Switching Rutile-TiO2

Published online by Cambridge University Press:  22 December 2014

Ranga J. Kamaladasa
Affiliation:
Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
Abhishek A. Sharma
Affiliation:
Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
Yu-Ting Lai
Affiliation:
Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
Wenhao Chen
Affiliation:
Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
Paul A. Salvador
Affiliation:
Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
James A. Bain
Affiliation:
Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
Marek Skowronski
Affiliation:
Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
Yoosuf N. Picard*
Affiliation:
Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
*
*Corresponding author. [email protected]
Get access

Abstract

In this study, in situ electrical biasing was combined with transmission electron microscopy (TEM) in order to study the formation and evolution of Wadsley defects and Magnéli phases during electrical biasing and resistive switching in titanium dioxide (TiO2). Resistive switching devices were fabricated from single-crystal rutile TiO2 substrates through focused ion beam milling and lift-out techniques. Defect evolution and phase transformations in rutile TiO2 were monitored by diffraction contrast imaging inside the TEM during electrical biasing. Reversible bipolar resistive switching behavior was observed in these single-crystal TiO2 devices. Biased induced reduction reactions created increased oxygen vacancy concentrations to such an extent that shear faults (Wadsley defects) and oxygen-deficient phases (Magnéli phases) formed over large volumes within the TiO2 TEM specimen. Nevertheless, the observed reversible formation/dissociation of Wadsley defects does not appear to correlate to resistive switching phenomena at these length scales. These defect zones were found to reversibly reconfigure in a manner consistent with charged oxygen vacancy migration responding to the applied bias polarity.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akihiro, S. (2008). Resistive switching in transition metal oxides. Mater Today 11, 2836.Google Scholar
Anderson, J.S. & Tilley, R.J.D. (1970). Crystallographic shear in oxygen-deficient rutile: An electron microscope study. J Solid State Chem 2(3), 472482.CrossRefGoogle Scholar
Argall, F. (1968). Switching phenomena in titanium oxide thin films. Solid State Electron 11, 535541.CrossRefGoogle Scholar
Baiatu, T., Waser, R. & Hardttl, K.-H. (1990). DC electrical degradation of perovskite-type titanates: III, a model of mechanism. J Am Ceram Soc 73(6), 16631673.Google Scholar
Bak, T., Nowotny, M.M.K., Sheppard, L.R. & Nowotny, J. (2008). Effect of prolonged oxidation on semiconducting properties of titanium dioxide. J Phys Chem 112, 1324813257. Available at http://pubs.acs.org/doi/abs/10.1021/jp803020d Google Scholar
Bartholomew, R. & Frankl, D. (1969). Electrical properties of some titanium oxides. Phys Rev 187(3), 828833. Available at http://journals.aps.org/pr/abstract/10.1103/PhysRev.187.828 Google Scholar
Bursill, L.A. & Hyde, B.G. (1970). On the aggregation of wadsley defects in slightly reduced rutile. Philos Mag 23, 314.CrossRefGoogle Scholar
Bursill, L.A. & Hyde, B.G.B. (1971). On the aggregation of Wadsley defects in slightly reduced rutile. Philos Mag 23, 314. Available at http://www.tandfonline.com/doi/abs/10.1080/14786437108216361 CrossRefGoogle Scholar
Bursill, L.A. & Hyde, B.G. (1972). Crystallographic shear in the higher titanium oxides: Structure, texture, mechanisms, and thermodynamics. Prog Solid State Chem 7, 177253.CrossRefGoogle Scholar
Bursill, L.A. & Hyde, B.G.B. (1972). Crystallographic shear in the higher titanium oxides: Structure, texture, mechanisms and thermodynamics. Prog Solid State Chem 7, 177253. Available at http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Crystallographic+Shear+in+the+Higher+Titanium+Oxides:+Structure,+Texture,+Mechanisms,+and+Thermodynamics#0 Google Scholar
Bursill, L.A., Watanabe, D., Hyde, B.G. & Terasaki, O. (1969). On a new family of titanium oxides and the nature of slightly-reduced rutile. Philos Mag 20, 347359.CrossRefGoogle Scholar
Chopra, K.L.K. (1965). Avalanche-induced negative resistance in thin oxide films. J Appl Phys 36(1), 184187.CrossRefGoogle Scholar
Chyr, I., Lee, B., Chao, L.C. & Steckl, A.J. (1999). Damage generation and removal in the Ga[sup +] focused ion beam micromachining of GaN for photonic applications. J Vac Sci Technol B Microelectron Nanometer Struct 17, 30633067.Google Scholar
Dearnley, G., Stoneham, A.M. & Morgan, D.V. (1970). Electrical phenomena in amorphous oxide films. Rep Prog Phys 33, 11291191. Available at http://iopscience.iop.org/0034-4885/33/3/306 Google Scholar
Gao, P., Wang, Z., Fu, W., Liao, Z., Liu, K., Wang, W. & Wang, E. (2010). In situ TEM studies of oxygen vacancy migration for electrically induced resistance change effect in cerium oxides. Micron (Oxford, England : 1993) 41, 301305.CrossRefGoogle ScholarPubMed
Ghenzi, N., Rubi, D., Mangano, E., Gimenez, G., Lell, J., Zelcer, A. & LEVY, P. (2014). Building memristive and radiation hardness TiO2-based junctions. Thin Solid Films 550, 683688.Google Scholar
Gruenwald, T.B. & Gordon, G. (1971). Oxygen diffusion in single crystals of titanium dioxide. J Inorg Nuclear Chem 33(1941), 11511155. Available at http://www.sciencedirect.com/science/article/pii/0022190271801847 Google Scholar
Huang, H.-H.H., Shih, W.-C.W. & LAI, C.-H. (2010). Nonpolar resistive switching in the Pt/MgO/Pt nonvolatile memory device. Appl Phys Lett 96(19), 193505. doi:10.1063/1.3429024CrossRefGoogle Scholar
Huang, J.Y., Zhong, L., Wang, C.M., Sullivan, J.P., XU, W., ZHANG, L.Q. & LI, J. (2010). In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science (New York, N.Y.) 330, 15151520.CrossRefGoogle ScholarPubMed
Jeong, D.S., Schroeder, H., Breuer, U. & Waser, R. (2008). Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere. J Appl Phys 104, 123716123718.Google Scholar
Jiang, W., Kamaladasa, R.J., Lu, Y.M., Vicari, A., Berechman, R., Salvador, P.A. & Skowronski, M. (2011). Local heating-induced plastic deformation in resistive switching devices. J Appl Phys 110, 054514054518. doi:10.1063/1.3633271Google Scholar
Jiang, W., Noman, M., Lu, Y.M., Bain, J.A., Salvador, P.A. & Skowronski, M. (2012). Mobility of oxygen vacancy in SrTiO3 and its implications for oxygen-migration-based resistance switching. J Appl Phys 110(3), 034509. doi:10.1063/1.3622623Google Scholar
Kim, Y., Jang, J.H., Park, S.-J., Jesse, S., Donovan, L., Borisevich, A.Y. & Kalinin, S.V. (2013). Local probing of electrochemically induced negative differential resistance in TiO2 memristive materials. Nanotechnology 24, 085702085708. doi:10.1088/0957-4484/24/8/085702Google Scholar
Ko, C., Karthikeyan, A. & Ramanathan, S. (2011). Studies on oxygen chemical surface exchange and electrical conduction in thin film nanostructured titania at high temperatures and varying oxygen pressure. J Chem Phys 134(1), 014704014709. doi:10.1063/1.3524341Google Scholar
Kwon, D.-H., Kim, K.M., Jang, J.H., Jeon, J.M., Lee, M.H., Kim, G.H. & Hwang, C.S. (2010). Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat Nanotechnol 5, 148153.Google Scholar
Lamperti, A., Spiga, S., Lu, H.L., Wiemer, C., Perego, M., Cianci, E. & Fanciulli, M. (2008). Study of the interfaces in resistive switching NiO thin films deposited by both ALD and e-beam coupled with different electrodes (Si, Ni, Pt, W, TiN). Microelectron Eng 85(12), 24252429.CrossRefGoogle Scholar
Landuyt, J.V.V. (1974). Shear structures and crystallographic shear propagation. J Phys Colloq C7(35), 5363. Available at http://jphyscol.journaldephysique.org/articles/jphyscol/abs/1974/07/jphyscol197435C704/jphyscol197435C704.html Google Scholar
Lee, S., Kim, H., Park, J. & Yong, K. (2010). Coexistence of unipolar and bipolar resistive switching characteristics in ZnO thin films. J Appl Phys 108(7), 076101076103. doi:10.1063/1.3489882CrossRefGoogle Scholar
Lin, C.-Y., Wu, C.-Y., Wu, C.-Y., Hu, C. & Tseng, T.-Y. (2007). Bistable resistive switching in Al2O3 memory thin films. J Electrochem Soc 154(9), G189G192.Google Scholar
Lu, Y.M., Noman, M., Chen, W., Salvador, P.A., Bain, J.A. & Skowronski, M. (2012). Elimination of high transient currents and electrode damage during electroformation of TiO2-based resistive switching devices. J Phys D Appl Phys 45, 395101395106. doi:10.1088/0022-3727/45/39/395101Google Scholar
Lu, Y.M., Noman, M., Picard, Y.N., Bain, J.A., Salvador, P.A. & Skowornski, M. (2013). Impact of Joule heating on the microstructure of nanoscale TiO2 resistive switching devices. J Appl Phys 113, 163703163709.Google Scholar
Menke, T., Dittmann, R., Meuffels, P., Szot, K. & Waser, R. (2009). Impact of the electroforming process on the device stability of epitaxial Fe-doped SrTiO3 resistive switching cells. J Appl Phys 106, 114507114508. doi:10.1063/1.3267485Google Scholar
Menzel, S., Waters, M., Marchewka, A., Böttger, U., Dittmann, R. & Waser, R. (2011). Origin of the ultra-nonlinear switching kinetics in oxide-based resistive switches. Adv Funct Mater 21(23), 44874492.Google Scholar
Oka, K., Yanagida, T., Nagashima, K., Kawai, T., Kim, J.-S. & Park, B.H. (2010). Resistive-switching memory effects of NiO nanowire/metal junctions. J Am Chem Soc 132(19), 66346635.Google Scholar
Pickett, M.D., Borghetti, J., Yang, J.J., Medeiros-Ribeiro, G. & Williams, R.S. (2011). Coexistence of memristance and negative differential resistance in a nanoscale metal-oxide-metal system. Adv Mater (Deerfield Beach, Fla.) 23, 17301733.Google Scholar
Reece, M. & Morrell, R. (1991). Electron microscope study of non-stoichiometric titania. J Mater Sci 26(20), 55665574.Google Scholar
Sawa, A. (2008). Resistive switching in transition metal oxides. Mater Today 11, 2836.Google Scholar
Strachan, J.P., Pickett, M.D., Yang, J.J., Aloni, S., David Kilcoyne, A.L., Medeiros-Ribeiro, G. & Stanley Williams, R. (2010). Direct identification of the conducting channels in a functioning memristive device. Adv Mater (Deerfield Beach, Fla.) 22, 35733577.Google Scholar
Strachan, J.P., Strukov, D.B., Borghetti, J., Yang, J.J., Medeiros-Ribeiro, G. & Williams, R.S. (2011). The switching location of a bipolar memristor: Chemical, thermal and structural mapping. Nanotechnology 22, 254015254016. doi:10.1088/0957-4484/22/25/254015Google Scholar
Szot, K., Dittmann, R., Speier, W. & Waser, R. (2007). Nanoscale resistive switching in SrTiO3 thin films. Phys Status Solidi - Rapid Res Lett 1, R86R88.Google Scholar
Szot, K., Rogala, M., Speier, W., Klusek, Z., Besmehn, A. & Waser, R. (2011). TiO2 – a prototypical memristive material. Nanotechnology 22, 254001254021. doi:10.1088/0957-4484/22/25/254001Google Scholar
Szot, K., Speier, W., Bihlmayer, G. & Waser, R. (2006). Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat Mater 5, 312320.CrossRefGoogle ScholarPubMed
Taylor, G. & Lalevic, B. (1976). RF relaxation oscillations in polycrystalline TiO2 thin films. Solid State Electron 19, 669674. Available at http://www.sciencedirect.com/science/article/pii/003811017690143X Google Scholar
Taylor, G. & Lalevic, B. (1977). Threshold switching in polycrystalline TiO2 thin films. J Appl Phys 48(10), 44104412.Google Scholar
Waser, R. (1989). Electrochemical boundary conditions for resistance degradation of doped alkaline-earth titanates. J Am Ceram Soc 72(12), 22342240.CrossRefGoogle Scholar
Waser, R. & Aono, M. (2007). Nanoionics-based resistive switching memories. Nat Mater 6, 833840.CrossRefGoogle ScholarPubMed
Waser, R., Dittmann, R., Staikov, G. & Szot, K. (2009). Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv Mater 21(25–26), 26322663.CrossRefGoogle ScholarPubMed
Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R. & Williams, R.S. (2008). Memristive switching mechanism for metal/oxide/metal nanodevices. Nat Nanotechnol 3, 429433.CrossRefGoogle ScholarPubMed
Yang, J.J., Strachan, J.P.J., Xia, Q., Ohlberg, D.A.A., Kuekes, P.J., Kelley, R.D. & Williams, R.S. (2010). Diffusion of adhesion layer metals controls nanoscale memristive switching. Adv Mater 22(36), 40344038.Google Scholar
Yang, J.J., Strukov, D.B. & Stewart, D.R. (2013). Memristive devices for computing. Nat Nanotechnol 8, 1324.Google Scholar
Yang, R., Terabe, K., Tsuruoka, T., Hasegawa, T. & Aono, M. (2012). Oxygen migration process in the interfaces during bipolar resistance switching behavior of WO3-based nanoionics devices. Appl Phys Lett 100(23), 231603231604. doi:10.1063/1.4726084Google Scholar
Yoon, K.J., Song, S.J., Seok, J.Y., Yoon, J.H., Kim, G.H., Lee, J.H. & Hwang, C.S. (2013). Ionic bipolar resistive switching modes determined by the preceding unipolar resistive switching reset behavior in Pt/TiO2/Pt. Nanotechnology 24, 145201145208. doi:10.1088/0957-4484/24/14/145201CrossRefGoogle ScholarPubMed