Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T22:34:12.430Z Has data issue: false hasContentIssue false

In Situ Reflection Electron Microscopy of Ge Island Nucleation on Mesa Structures

Published online by Cambridge University Press:  22 January 2004

F.M. Ross
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598, USA
M. Kammler
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA
M.E. Walsh
Affiliation:
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
M.C. Reuter
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598, USA
Get access

Abstract

We have used in situ electron microscopy to observe the nucleation of Ge islands on lithographically patterned Si(001) mesas. Images were obtained at video rate during chemical vapor deposition of Ge, using a reflection electron microscopy geometry that allows nucleation to be observed over large areas. By comparing the kinetics of nucleation and coarsening on substrates modified by different annealing conditions, we find that the final island arrangement depends on the nature of the mesa sidewalls, and we suggest that this may be due to changes in diffusion of Ge across the nonplanar surface.

Type
Research Article
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Börgstrom, M., Zela, V., & Seifert, W. (2003). Arrays of Ge islands on Si(001) grown by means of electron-beam pre-patterning. Nanotechnology 14, 264267.Google Scholar
Drucker, J. (1993). Coherent islands and microstructural evolution. Phys Rev B 48, 1820318206.Google Scholar
Eberl, K., Lipinski, M.O., Manz, Y.M., Winter, W., Jin-Phillipp, N.Y., & Schmidt, O.G. (2001). Self assembling quantum dots for optoelectronic devices on Si and GaAs. Physica E 9, 164174.Google Scholar
Farhoud, M., Ferrera, J., Lochtefeld, A.J., Murphy, T.E., Schattenburg, M.L., Carter, J., Ross, C.A., & Smith, H.I. (1999). Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist. J Vac Sci Technol B 17, 31823185.Google Scholar
Gajdardziska-Josifovska, M., Malay, M.H., & Smith, D.J. (1997). Reflection electron microscopy methodology for quantification of cluster growth: Indium clusters on the InP(110) surface. Surf Rev Lett 4, 655659.Google Scholar
Gehrig, E. & Hess, O. (2002). Mesoscopic spatiotemporal theory for quantum-dot lasers. Phys Rev A 65, 033804-1033804-16.Google Scholar
Grey, J.L., Hull, R., & Floro, J.A. (2002). Control of surface morphology through variation of growth rate in SiGe/Si(100) epitaxial films: Nucleation of “quantum fortresses.” Appl Phys Lett 81, 24452447.Google Scholar
Hammar, M., LeGoues, F., Tersoff, J., Reuter, M.C., & Tromp, R.M. (1995). In situ ultrahigh vacuum transmission electron microscopy studies of heteroepitaxial growth. I. Si(001)/Ge. Surf Sci 349, 129144.Google Scholar
Imamoglu, A., Awschalom, D.D., Burkard, G., DiVincenzo, D.P., Loss, D., Sherwin, M., & Small, A. (1999). Quantum information processing using quantum dot spins and cavity QED. Phys Rev Lett 83, 42044207.Google Scholar
Jin, G., Liu, J.L., Thomas, S.G., Luo, Y.H., Wang, K.L., & Nguyen, B.-Y. (1999). Controlled arrangement of self-organized Ge islands on patterned Si(001) substrates. Appl Phys Lett 75, 27522754.Google Scholar
Jin, G., Liu, J.L., & Wang, K.L. (2000). Regimented placement of self-assembled Ge dots on selectively grown Si mesas. Appl Phys Lett 76, 35913593.Google Scholar
Kamins, T.I., Carr, E.C., Williams, R.S., & Rosner, S.J. (1997). Deposition of three-dimensional Ge islands on Si(001) by chemical vapour deposition at atmospheric and reduced pressure. J Appl Phys 81, 211219.Google Scholar
Kamins, T.I. & Williams, R.S. (1997). Lithographic positioning of self-assembled Ge islands on Si(001). Appl Phys Lett 71, 12011203.Google Scholar
LeGoues, F., Reuter, M.C., Tersoff, J., Hammar, M., & Tromp, R.M. (1994). Cyclic growth of strain-relaxed islands. Phys Rev Lett 73, 300303.Google Scholar
Lent, C.S., Tougaw, P.D., Porod, W., & Bernstein, G.H. (1993). Quantum cellular automata. Nanotechnology 4, 4957.Google Scholar
Medeiros-Ribeiro, G., Bratkovsky, A.M., Kamins, T.I., Ohlberg, D.A.A., & Williams, R.S. (1998). Shape transition of germanium nanocrystals on a silicon (001) surface from pyramids to domes. Science 279, 353355.Google Scholar
Reese, A.C., Becher, C., Imamoglu, A., Hu, E., Gerardot, B.D., & Petroff, P.M. (2001). Photonic crystal microcavities with self-assembled InAs dots as active emitters. Appl Phys Lett 78, 22792281.Google Scholar
Ross, F.M. (2000). Growth processes and phase transformations studied by in situ transmission electron microscopy. IBM J Res 44, 489501.Google Scholar
Ross, F.M., LeGoues, F.K., Tersoff, J., Tromp, R.M., & Reuter, M. (1998a). In situ transmission electron microscopy observations of the formation of self-assembled Ge islands on Si. Microsc Res Tech 42, 281294.Google Scholar
Ross, F.M., Tersoff, J., & Tromp, R.M. (1998b). Coarsening of self-assembled Ge quantum dots on Si(100). Phys Rev Lett 80, 984987.Google Scholar
Ross, F.M., Tromp, R.M., & Reuter, M.C. (1999). Transition states between pyramids and domes during Si/Ge island growth. Science 286, 19311934.Google Scholar
Schwarz-Selinger, T., Foo, Y.L., Cahill, D.G., & Greene, J.E. (2002). Surface mass transport and island nucleation during growth of Ge on laser-textured Si(001). Phys Rev B 65, 125317-1125317-8.Google Scholar
Suguwara, M., Mukai, K., Nakata, Y., Ishikawa, H., & Sakamoto, A. (2000). Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1−xAs/GaAs quantum dot lasers. Phys Rev B 61, 75957603.Google Scholar
Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbe, E.F., & Chan, K. (1996). A silicon nanocrystals based memory. Appl Phys Lett 68, 13771379.Google Scholar