Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T23:42:21.706Z Has data issue: false hasContentIssue false

Improving Signal-to-Noise Ratio in Scanning Transmission Electron Microscopy Energy-Dispersive X-Ray (STEM-EDX) Spectrum Images Using Single-Atomic-Column Cross-Correlation Averaging

Published online by Cambridge University Press:  28 March 2016

Jong Seok Jeong*
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
K. Andre Mkhoyan*
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
*
*Corresponding authors.[email protected] (KAM), [email protected] (JSJ)
*Corresponding authors.[email protected] (KAM), [email protected] (JSJ)
Get access

Abstract

Acquiring an atomic-resolution compositional map of crystalline specimens has become routine practice, thus opening possibilities for extracting subatomic information from such maps. A key challenge for achieving subatomic precision is the improvement of signal-to-noise ratio (SNR) of compositional maps. Here, we report a simple and reliable solution for achieving high-SNR energy-dispersive X-ray (EDX) spectroscopy spectrum images for individual atomic columns. The method is based on standard cross-correlation aided by averaging of single-column EDX maps with modifications in the reference image. It produces EDX maps with minimal specimen drift, beam drift, and scan distortions. Step-by-step procedures to determine a self-consistent reference map with a discussion on the reliability, stability, and limitations of the method are presented here.

Type
Technique and Instrumentation Development
Copyright
Copyright © Microscopy Society of America 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bosman, M., Keast, V.J., García-Muñoz, J.L., D’Alfonso, A.J., Findlay, S.D. & Allen, L.J. (2007). Two-dimensional mapping of chemical information at atomic resolution. Phys Rev Lett 99, 086102.Google Scholar
Chu, M.W., Liou, S.C., Chang, C.P., Choa, F.S. & Chen, C.H. (2010). Emergent chemical mapping at atomic-column resolution by energy-dispersive X-ray spectroscopy in an aberration-corrected electron microscope. Phys Rev Lett 104, 196101.Google Scholar
D’Alfonso, A.J., Freitag, B., Klenov, D. & Allen, L.J. (2010). Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy. Phys Rev B 81, 100101.Google Scholar
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Springer.Google Scholar
Frank, J., Goldfarb, W., Eisenberg, D. & Baker, T.S. (1978). Reconstruction of glutamine synthetase using computer averaging. Ultramicroscopy 3, 283290.Google Scholar
von Harrach, H.S., Dona, P., Freitag, B., Soltau, H., Niculae, A. & Rohde, M. (2009). An integrated silicon drift detector system for FEI Schottky field emission transmission electron microscopes. Microsc Microanal 15, 208209.Google Scholar
von Harrach, H.S., Dona, P., Freitag, B., Soltau, H., Niculae, A. & Rohde, M. (2010). An integrated multiple silicon drift detector system for transmission electron microscopes. J Phys Conf Ser 241, 012015.Google Scholar
Jiang, Y., Wang, Y., Sagendorf, J., West, D., Kou, X., Wei, X., He, L., Wang, K.L., Zhang, S. & Zhang, Z. (2013). Direct atom-by-atom chemical identification of nanostructures and defects of topological insulators. Nano Lett 13, 28512856.Google Scholar
Kimoto, K., Asaka, T., Nagai, T., Saito, M., Matsui, Y. & Ishizuka, K. (2007). Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450, 702704.Google Scholar
Kotula, P.G., Klenov, D.O. & von Harrach, H.S. (2012). Challenges to quantitative multivariate statistical analysis of atomic-resolution x-ray spectral. Microsc Microanal 18, 691698.Google Scholar
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2008). Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev Lett 100, 206101.Google Scholar
Muller, D.A., Kourkoutis, L.F., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N. & Krivanek, O.L. (2008). Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 10731076.Google Scholar
Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. (2007). Numerical Recipes: The Art of Scientific Computing. New York: Cambridge University Press.Google Scholar
Sang, X. & LeBeau, J.M. (2014). Revolving scanning transmission electron microscopy: Correcting sample drift distortion without prior knowledge. Ultramicroscopy 138, 2835.Google Scholar
Sangwine, S.J. & Horne, R.E.N. (1998). The Colour Image Processing Handbook. London: Chapman and Hall.Google Scholar
Saxton, W.O. & Baumeister, W. (1982). The correlation averaging of a regularly arranged bacterial cell envelope protein. J Microsc 127, 127138.Google Scholar
Suenaga, K., Okazaki, T., Okunishi, E. & Matsumura, S. (2012). Detection of photons emitted from single erbium atoms in energy-dispersive X-ray spectroscopy. Nat Photonics 6, 545548.Google Scholar
Yankovich, A.B., Berkels, B., Dahmen, W., Binev, P., Sanchez, S.I., Bradley, S.A., Li, A., Szlufarska, I. & Voyles, P.M. (2014). Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts. Nat Commun 5, 4155.Google Scholar