Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T13:28:50.925Z Has data issue: false hasContentIssue false

Implementing a storage and compute server to enhance processing of big imaging data.

Published online by Cambridge University Press:  30 July 2021

Jonathan Boyd
Affiliation:
AstraZeneca, Gaitherburg, Maryland, United States
P. Bradley Goebel
Affiliation:
AstraZeneca, Gaitherburg, Maryland, United States
Matthias Rust
Affiliation:
Arivis AG, Rostock, Mecklenburg-Vorpommern, Germany
Christopher Zugates
Affiliation:
Arivis AG, Washington, District of Columbia, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
From Images to Insights: Working with Large Multi-modal Data in Cell Biological Imaging
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Hey, Tony, Butler, Keith, Jackson, Sam, and Thiyagalingam, Jeyarajan. Machine learning and big scientific data. Philos Trans A Math Phys Eng Sci. 2020 Mar 6; 378(2166): 20190054.Google ScholarPubMed
Baldwin, Philip R., Tan, Yong Zi, Eng, Edward T., Rice, William J., Noble, Alex J., Negro, Carl J., Cianfrocco, Michael A., Potter, Clinton S., and Carragher, Bridget. Big Data in CryoEM: Automated collection, processing and accessibility of EM data. Curr Opin Microbiol. 2018 Jun; 43: 18. Published online 2017 Oct 31. doi: 10.1016/j.mib.2017.10.005CrossRefGoogle ScholarPubMed
Briscoe, James, Marín, Oscar. Review: Looking at neurodevelopment through a big data lens. Science 18 Sep 2020: Vol. 369, Issue 6510, eaaz8627 DOI: 10.1126/science.aaz8627CrossRefGoogle ScholarPubMed
Orth, Antony, Schaak, Diane, Schonbrun, Ethan. Microscopy, Meet Big Data. Volume 4, Issue 3, 22 March 2017, Pages 260-261Google ScholarPubMed