Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T00:29:37.643Z Has data issue: false hasContentIssue false

Image Processing and Lattice Determination for Three-Dimensional Nanocrystals

Published online by Cambridge University Press:  18 November 2011

Linhua Jiang*
Affiliation:
Gorlaeus Laboratory, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands Service Science Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
Dilyana Georgieva
Affiliation:
Gorlaeus Laboratory, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
Igor Nederlof
Affiliation:
Gorlaeus Laboratory, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
Zunfeng Liu
Affiliation:
Gorlaeus Laboratory, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
Jan Pieter Abrahams*
Affiliation:
Gorlaeus Laboratory, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
*
Corresponding author. E-mail: [email protected]
Corresponding author. E-mail: [email protected]
Get access

Abstract

Three-dimensional nanocrystals can be studied by electron diffraction using transmission cryo-electron microscopy. For molecular structure determination of proteins, such nanosized crystalline samples are out of reach for traditional single-crystal X-ray crystallography. For the study of materials that are not sensitive to the electron beam, software has been developed for determining the crystal lattice and orientation parameters. These methods require radiation-hard materials that survive careful orienting of the crystals and measuring diffraction of one and the same crystal from different, but known directions. However, as such methods can only deal with well-oriented crystalline samples, a problem exists for three-dimensional (3D) crystals of proteins and other radiation sensitive materials that do not survive careful rotational alignment in the electron microscope. Here, we discuss our newly released software AMP that can deal with nonoriented diffraction patterns, and we discuss the progress of our new preprocessing program that uses autocorrelation patterns of diffraction images for lattice determination and indexing of 3D nanocrystals.

Type
Software and Techniques Development
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrahams, J.P. (2010). The strong phase object approximation may allow extending crystallographic phases of dynamical electron diffraction patterns of 3D protein nano-crystals. Z Kristallogr 255, 6776.Google Scholar
Bragg, W.L. (1913). The diffraction of short electromagnetic waves by a crystal. Proc Cambr Philos Soc 17, 4357.Google Scholar
Capitani, G. C., Oleynikov, P., Hovmöller, S. & Mellini, M. (2006). A practical method to detect and correct for lens distortion in the TEM. Ultramicroscopy 106, 6674.Google Scholar
Collaborative (1994). The CCP4 suite: Programs for protein crystallography. Acta Crystallogr D 50, 760763.Google Scholar
Crowther, R.A., Henderson, R. & Smith, J.M. (1996). MRC image processing programs. J Struct Biol 116, 916.Google Scholar
Fujiyoshi, Y. & Unwin, N. (2008). Electron crystallography of proteins in membranes. Curr Opin Struct Biol 18, 587592.CrossRefGoogle ScholarPubMed
Gipson, B., Zeng, X., Zhang, Z.Y. & Stahlberg, H. (2007). 2dx—User-friendly image processing for 2D crystals. J Struct Biol 157, 6472.CrossRefGoogle Scholar
Henderson, R., Baldwin, J.M., Ceska, T.A., Zemlin, F., Beckmann, E. & Downing, K.H. (1990). Model for the structure of bacteriorhodopsin based on high-resolution electron cryomicroscopy. J Molec Biol 213, 899929.Google Scholar
Hiroaki, Y., Tani, K., Kamegawa, A., Gyobu, N., Nishikawa, K., Suzuki, H., Walz, T., Sasaki, S., Mitsuoka, K., Kimura, K., Mizoguchi, A. & Fujiyoshi, Y. (2006). Implications of the aquaporin-4 structure on array formation and cell adhesion. J Molec Biol 355, 628639.Google Scholar
Holm, P.J., Bhakat, P., Jegerschold, C., Gyobu, N., Mitsuoka, K., Fujiyoshi, Y., Morgenstern, R. & Hebert, H. (2006). Structural basis for detoxification and oxidative stress protection in membranes. J Molec Biol 360, 934945.CrossRefGoogle ScholarPubMed
Jiang, L., Georgieva, D., Ijspeert, K. & Abrahams, J.P. (2009a). An intelligent peak search program for digital electron diffraction images of 3D nano-crystals. CISP '09, 2nd International Congress, October 17–19, 2009, pp. 1–5.Google Scholar
Jiang, L.H., Georgieva, D., Zandbergen, H.W. & Abrahams, J.P. (2009b). Unit-cell determination from randomly oriented electron-diffraction patterns. Acta Crystallogr D 65, 625632.CrossRefGoogle ScholarPubMed
Kolb, U., Gorelik, T. & Otten, M.T. (2008). Towards automated diffraction tomography. Part II—Cell parameter determination. Ultramicroscopy 108, 763772.CrossRefGoogle ScholarPubMed
Li, X.Z. (2005). Computer programs for unit-cell determination in electron diffraction experiments. Ultramicroscopy 102, 269277.Google Scholar
McQueen, T., Xu, Q., Andersen, E.N., Zandbergen, H.W. & Cava, R.J. (2007). Structures of the reduced niobium oxides Nb12O29 and Nb22O54. J Solid State Chem 180, 28642870.CrossRefGoogle Scholar
Mitchell, D.R.G. (2008). DiffTools: Electron diffraction software tools for DigitalMicrograph™. Microsc Res Techniq 71, 588593.CrossRefGoogle ScholarPubMed
Mugnaioli, E., Gorelik, T. & Kolb, U. (2009). “Ab initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy 109, 758765.CrossRefGoogle ScholarPubMed
Nogales, E., Wolf, S.G. & Downing, K.H. (1998). Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391, 199203.Google Scholar
Plaisier, J.R., Koning, R.I., Koerten, H.K., Van Roon, A.M., Thomassen, E.A.J., Kuil, M.E., Hendrix, J., Broennimann, C., Pannu, N.S. & Abrahams, J.P. (2003). Area detectors in structural biology. Nucl Instrum Methods A 509, 274282.CrossRefGoogle Scholar
Sun, J.L., He, Z.B., Hovmöller, S., Zou, X.D., Gramm, F., Baerlocher, C. & McCusker, L.B. (2010). Structure determination of zeolite IM-5 by electron crystallography. Z Kristallogr 225, 7785.Google Scholar
Winn, M. (2003). An overview of the CCP4 project in protein crystallography: An example of a collaborative project. J Synchrotron Radiat 10, 2325.Google Scholar
Zeng, X., Gipson, B., Zheng, Z.Y., Renault, L. & Stahlberg, H. (2007). Automatic lattice determination for two-dimensional crystal images. J Struct Biol 160, 353361.CrossRefGoogle ScholarPubMed
Zou, X.D., Hovmoller, A. & Hovmoller, S. (2004). TRICE—A program for reconstructing 3D reciprocal space and determining unit-cell parameters. Ultramicroscopy 98, 187193.Google Scholar