Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-19T10:46:44.275Z Has data issue: false hasContentIssue false

Hydride Formation and Deformation Mechanisms in Commercially Pure Titanium

Published online by Cambridge University Press:  22 July 2022

Stoichko Antonov*
Affiliation:
National Energy Technology Laboratory, Albany, OR, United States
Qing Tan
Affiliation:
Max-Planck-Institut fur Eisenforschung GmbH, Dusseldorf, Germany
Baptiste Gault
Affiliation:
Max-Planck-Institut fur Eisenforschung GmbH, Dusseldorf, Germany Imperial College London, London, United Kingdom
*
*Corresponding author: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Emerging Methods for Characterizing Hydrogen Effects in Metals and Alloys
Copyright
Copyright © Microscopy Society of America 2022

References

Lütjering, G. and Williams, J.C. in “Titanium”, (Springer, Berlin). doi: 10.1007/978-3-540-73036-1CrossRefGoogle Scholar
Gorynin, I. V., Materials Science and Engineering A 263 (1999), 112116. doi: 10.1007/978-3-540-73036-1CrossRefGoogle Scholar
Chang, Y. et al. , Scripta Materialia 178 (2020), 3943. doi: 1 0.1016/j.scriptamat.2019.11.010CrossRefGoogle Scholar
Okamoto, H., Journal of Phase Equilibria 13 (1992), 443. 10.1007/BF02675000Google Scholar
Matysina, Z.A and Shchur, D.V., Russian Physics Journal 42 (2001), 1237-1243. doi: 10.1023/A:1015318110874CrossRefGoogle Scholar
Li, S. et al. , Acta Materialia 140 (2017), 168175. doi: 10.1016/j.actamat.2017.08.047CrossRefGoogle Scholar
BG and QT are grateful for financial support from the EPSRC (under grant number EP/T01041X/1) and the ERC-CoG-SHINE-771602. The use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02- 06CH11357.Google Scholar