Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T15:54:22.722Z Has data issue: false hasContentIssue false

A hybrid image retrieval system for microscopy images

Published online by Cambridge University Press:  30 July 2021

Weixin Jiang
Affiliation:
Northwestern University, United States
Eric Schwenker
Affiliation:
Argonne National Laboratory, United States
Trevor Spreadbury
Affiliation:
Argonne National Laboratory, United States
Oliver Cossairt
Affiliation:
Northwestern University, United States
Maria KY Chan
Affiliation:
ANL, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Full System and Workflow Automation for Enabling Big Data and Machine Learning in Electron Microscopy
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Schwenker, E., Jiang, W., Spreadbury, T., O'Brien, S., Ferrier, N., Cossairt, O., & Chan, M. (2020). Constructing Self-Labeled Materials Imaging Datasets from Open Access Scientific Journals with EXSCLAIM! Microscopy and Microanalysis, 26(S2), 3096–3097. doi:10.1017/S1431927620023806CrossRefGoogle Scholar
Jiang, W., Schwenker, E., Spreadbury, T., Ferrier, N., Chan, M. K., & Cossairt, O. (2021). A Two-stage Framework for Compound Figure Separation. arXiv preprint arXiv:2101.09903.Google Scholar
Radenović, F., Tolias, G., & Chum, O. (2018). Fine-tuning CNN image retrieval with no human annotation. IEEE transactions on pattern analysis and machine intelligence, 41(7), 16551668.CrossRefGoogle ScholarPubMed
Radenović, F., Tolias, G., & Chum, O. (2016, October). CNN image retrieval learns from BoW: Unsupervised fine-tuning with hard examples. In European conference on computer vision (pp. 3–20). Springer, Cham.CrossRefGoogle Scholar
Sanderson, M., & Croft, W. B. (2012). The history of information retrieval research. Proceedings of the IEEE, 100(Special Centennial Issue), 1444–1451.CrossRefGoogle Scholar
Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. arXiv preprint arXiv:1506.01497.Google Scholar
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778)CrossRefGoogle Scholar
Zheng, L., Yang, Y., & Tian, Q. (2017). SIFT meets CNN: A decade survey of instance retrieval. IEEE transactions on pattern analysis and machine intelligence, 40(5), 12241244.Google Scholar
Hu, J., Lu, J., & Tan, Y. P. (2014). Discriminative deep metric learning for face verification in the wild. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1875–1882).Google Scholar
Hoffer, E., & Ailon, N. (2015, October). Deep metric learning using triplet network. In International workshop on similarity-based pattern recognition (pp. 84–92). Springer, Cham.CrossRefGoogle Scholar