Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T08:29:00.430Z Has data issue: false hasContentIssue false

High-Resolving Mass Analyzers

Published online by Cambridge University Press:  28 September 2015

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

First high-resolving mass analyzers were built ≈80 years ago as sector field systems, well reproducible ones, however, only much later. Besides these sector-field systems there are three other types of mass analyzers: (1) Penning trap mass analyzers, have achieved the highest resolving powers, but require big technological efforts. (2) Time-of-flight mass analyzers have become the most versatile systems, while high performing multi-reflection time-of-flight systems have only started to be used. (3) Fourier Transform and Orbitrap mass analyzers have achieved spectacularly high mass resolving powers, but are also technically demanding and difficult to build systems.

Type
Mass Spectrometers
Copyright
Copyright © Microscopy Society of America 2015 

References

References:

[1]Aston, FW, Philos. Mag. 38 (1919). p. 709.CrossRefGoogle Scholar
[2]Wanjo, S, et al, Astrophys. J. 606 (2004). p. 1057.CrossRefGoogle Scholar
[3]Gygi, SP, et al, Nat. Biotechnol. 17 (1999). p. 994.CrossRefGoogle Scholar
[4]Wollnik, H in Optics of Charged Particles. Acad. Press, Orlando.Google Scholar
[5]Nier, AO, Phys. Rev. 50 (1936). p. 1041.CrossRefGoogle Scholar
[6]Boldin, IA & Nikolaev, EN, Rap. Comm. Mass Sp 25 (2011). p. 122.CrossRefGoogle Scholar
[7]Bollen, G, et al, Nucl Instr. Meth. B 70 (1992). p. 480.CrossRefGoogle Scholar
[8]Eliseev, S, et al, Phys. Rev. Lett. 110 (2013), 082501.CrossRefGoogle Scholar
[9]Naimi, S, et al, Int. J. Mass Spectrom. Ion Phys. 340 (2013). p. 38.Google Scholar
[10]Wollnik, H, Nucl. Instrum. Methods 186 (1981). p. 441.CrossRefGoogle Scholar
[11]Wouters, JM, et al, Nucl. Instrum. Meth A 240 (1985). p. 77.CrossRefGoogle Scholar
[12]Wollnik, H, Nucl. Instrum. Meth. B 26 (1987). p. 267.CrossRefGoogle Scholar
[13]Wollnik, H, Int. J. Mass Spectrom. 349 (2013). p. 38.CrossRefGoogle Scholar
[14]Franzke, B, Nucl. Instrum. Meth B 24 (1987). p. 18.CrossRefGoogle Scholar
[15]Sakurai, T, et al, Int. J. Mass Spectrom. 66 (1985). p. 283.CrossRefGoogle Scholar
[16]Nishiguchi, M, et al, J. Mass Spectrom. 44 (2009). p. 594.CrossRefGoogle Scholar
[17]Mamyrin, BA & Karateev, VI, Sov. Phys. JETP-USSR 37 (1973). p. 45.Google Scholar
[18]Wollnik, H & Przewloka, M, Int. J. Mass Spectrom. 96 (1990). p. 267.CrossRefGoogle Scholar
[19]Wollnik, H & Casares, A, Int. J. Mass Spectrom. 227 (2003). p. 217.CrossRefGoogle Scholar
[20]Schury, P, et al, Nucl. Instrum. Meth. B 317 (2013). p. 537.CrossRefGoogle Scholar
[21]Kingdon, KH, Phys. Rev. Lett. 21 (1923). p. 408.Google Scholar
[22]Makarov, AA, Anal. Chem. 72 (2000). p. 1156. 78 (2006), p. 2113.CrossRefGoogle Scholar