Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T06:40:56.508Z Has data issue: false hasContentIssue false

High-Energy Resolution Electron Energy-Loss Spectroscopy Study of Interband Transitions Characteristic to Single-Walled Carbon Nanotubes

Published online by Cambridge University Press:  31 March 2014

Yohei Sato*
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 1, 1 Katahira, 2-Chome, Aobaku, Sendai 980-8577, Japan
Masami Terauchi
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 1, 1 Katahira, 2-Chome, Aobaku, Sendai 980-8577, Japan
*
*Corresponding author. [email protected]
Get access

Abstract

An electron energy-loss spectroscopic (EELS) study using a monochromator transmission electron microscope was conducted for investigating the dielectric response of isolated single-walled carbon nanotubes (SWCNTs) owing to interband transitions characteristic to chiral structures. Individual chiral structures of the SWCNTs were determined by electron diffraction patterns. EELS spectra obtained from isolated SWCNTs showed sharp peaks below π plasmon energy of 5 eV, which were attributed to the characteristic interband transitions of SWCNTs. In addition, unexpected shoulder structures were observed at the higher energy side of each sharp peak. Simulations of EELS spectra by using the continuum dielectric theory showed that an origin of the shoulder structures was because of the surface dipole mode along the circumference direction of the SWCNT. It was noticed that the electron excitation energies obtained by EELS were slightly higher than those of optical studies, which might be because of the inelastic scattering process with the momentum transfers. To interpret the discrepancy between the EELS and optical experiments, it is necessary to conduct more accurate simulation including the first principle calculation for the band structure of SWCNTs.

Type
EDGE Special Issue
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araujo, P.T., Doorn, S.K., Kilina, S., Tretiak, S., Einarsson, E., Maruyama, S., Chacham, H., Pimenta, M.A. & Jorio, A. (2007). Third and fourth optical transitions in semiconducting carbon nanotubes. Phys Rev Lett 98, 067401.Google Scholar
Bachilo, S.M., Strano, M.S., Kittrell, C., Hauge, R.H., Smalley, R.E. & Weisman, R.B. (2002). Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 23612366.Google Scholar
Batson, P.E. (1993). Distortion of the core exciton by the swift electron and plasmon wake in spatially resolved electron-energy-loss scattering. Phys Rev B 47, 68986910.CrossRefGoogle ScholarPubMed
Bertsch, G.F., Esbensen, H. & Reed, B.W. (1998). Electron energy-loss spectrum of nanowire. Phys Rev B 58, 1403114035.CrossRefGoogle Scholar
Daniels, J., Festenberg, C.V., Raether, H. & Zeppenfeld, K. (1970). Optical constants of solids by electron spectroscopy. Springer Tr Mod Phys 54, 78135.Google Scholar
Gao, M., Zuo, J.M., Twesten, R.D. & Petrov, I. (2003). Structure determination of individual single-wall carbon nanotubes. Appl. Phys. Lett 82, 27032705.Google Scholar
Greenway, G.L. & Harbeke, G. (1969). Anisotropy of the optical constants and the band structure of graphite. Phys Rev 178, 13401348.CrossRefGoogle Scholar
Grüneis, A., Saito, R., Samsonidze, G.E.G., Kimura, T., Pimenta, M.A., Jorio, A., Souza Filo, A.G., Dresselhause, G. & Dresselhause, M.S. (2003). Inhomogeneous optical absorption around the K point in graphite and carbon nanotubes. Phys Rev B 67, 165402.CrossRefGoogle Scholar
Jorio, A., Dresselhaus, G., Dresselhaus, M.S., Souza, M., Dantas, M.S.S., Pimenta, M.A., Rao, A.M., Saito, R., Liu, C. & Cheng, H.M. (2000). Polarized Raman study of single-wall semiconducting carbon nanotubes. Phys Rev Lett 85, 26172620.CrossRefGoogle ScholarPubMed
Jorio, A., Fantini, C., Pimenta, M.A., Capaz, R.B., Samsonidze, G.E.G., Dresselhaus, G., Dresselhaus, M.S., Jiang, J., Kobayashi, N., Gruneis, A. & Saito, R. (2005). Resonance Raman spectroscopy (n,m)-dependent effects in small-diameter single-wall carbon nanotubes. Phys Rev B 71, 075401.CrossRefGoogle Scholar
Jorio, A., Pimenta, M.A., Souza Filho, A.G., Samsonidze, G.E.G., Swan, A.K., Ünlü, M.S., Goldbelg, B.B., Saito, R., Dresselhause, G. & Dresselhause, M.S. (2003). Resonance Raman spectra of carbon nanotubes by cross-polarized light. Phys Rev Lett 90, 107403.Google Scholar
Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, M., McClure, T., Dresselhaus, G. & Dresselhaus, M.S. (2001). Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys Rev Lett 86, 11181121.CrossRefGoogle ScholarPubMed
Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtuka, Y. & Achiba, Y. (1999). Optical properties of single-wall carbon nanotubes. Synthetic Met 103, 25552558.Google Scholar
Kociak, M., Henrard, L., Stéphan, O., Suenaga, K. & Colliex, C. (2000). Plasmons in layered nanospheres and nanotubes investigated by spatially resolved electron energy-loss spectroscopy. Phys Rev B 61, 1393613943.Google Scholar
Kociak, M., Hirahara, K., Suenaga, K. & Iijima, S. (2003). How accurate can the determination of chiral indices of carbon nanotubes be? Eur Phys J B 32, 457469.Google Scholar
Kociak, M., Stéphan, O., Henrard, L., Charbois, V., Rothschild, A., Tenne, R. & Colliex, C. (2001). Experimental evidence of surface-plasmon coupling in anisotropic hollow nanoparticles. Phys Rev Lett 87, 075501.Google Scholar
Kikkawa, J., Takeda, S., Sato, Y. & Terauchi, M. (2007). Enhanced direct interband transitions in silicon nanowires studied by electron energy-loss spectroscopy. Phys Rev B 75, 245317.Google Scholar
Kramberger, C., Hambach, R., Giorgetti, C., Rummeli, M.H., Knupher, M., Fink, J., Buchner, B., Reining, L., Einarsson, E., Maruyama, S., Sottile, F., Hannewald, K., Olevano, V., Marinopoulos, A.G. & Picher, T. (2008). Linear plasmon dispersion in single-wall carbon nanotubes and collective excitation spectrum of graphite. Phys Rev Lett 100, 196803.Google Scholar
Kuzuo, R., Terauchi, M. & Tanaka, M. (1992). Electron energy-loss spectra of carbon nanotubes. Jpn J Appl Phys 31, L1484L1487.CrossRefGoogle Scholar
Lefebvre, J., Homma, Y. & Finnie, P. (2003). Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes. Phys Rev Lett 90, 217401.CrossRefGoogle ScholarPubMed
Lucas, A.A., Henrard, L. & Lambin, P. (1994). Computation of the ultraviolet absorption and electron inelastic scattering cross section of multishell fullerenes. Phys Rev B 49, 28882896.Google Scholar
Malic, E., Hirtschulz, M., Milde, F., Wu, Y., Maultzsch, J., Heinz, T.F., Knorr, A. & Reich, S. (2008). Theory of Rayleigh scattering from metallic carbon nanotubes. Phys Rev B 77, 045432.CrossRefGoogle Scholar
Mukai, M., Inami, W., Omoto, K., Kaneyama, T., Tomita, T., Tsuno, K., Terauchi, M., Tsuda, K., Sato, Y., Naruse, M., Honda, T. & Tanaka, M. (2007). Performance of a monochromator for 200 kV analytical electron microscope. Microsc Microanal 13, 12421243.Google Scholar
Murakami, Y., Einarsson, E., Edamura, T. & Maruyama, S. (2005). Polarization dependence of the optical absorption of single-walled carbon nanotubes. Phys Rev Lett 94, 087402.CrossRefGoogle ScholarPubMed
Picher, T., Knupher, M., Golden, M.S. & Fink, J. (1998). Localized and delocalized electronic states in single-wall carbon nanotubes. Phys Rev Lett 80, 47294732.Google Scholar
Popov, V.N. (2004). Curvature effects on the structural, electronic and optical properties of isolated single-walled carbon nanotubes within a symmetry-adapted non-orthogonal tight-binding model. New J Phys 6, 117.CrossRefGoogle Scholar
Reed, B.W., Chen, J.M., MacDonald, N.C., Silcox, J. & Bertsch, G.F. (1999). Fabrication and STEM/EELS measurements of nanometer-scale silicon tips and filaments. Phys Rev B 60, 56415652.CrossRefGoogle Scholar
Reed, B.W. & Sarikaya, M. (2001). Electronic properties of carbon nanotubes by transmission electron energy-loss spectroscopy. Phys Rev B 64, 195404.CrossRefGoogle Scholar
Saito, R., Dresselhause, G. & Dresselhaus, M.S. (2000). Trigonal warping effect of carbon nanotubes. Phys Rev B 61, 29812990.Google Scholar
Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M.S. (1992). Electronic structure of chiral grapheme tubules. Appl Phys Lett 60, 22042206.Google Scholar
Sato, Y., Terauchi, M., Mukai, M., Kaneyama, T. & Adachi, K. (2011). High energy-resolution electron energy-loss spectroscopy study of the dielectric properties of bulk and nanoparticle LaB6 in the near-infrared region. Ultramicroscopy 111, 13811387.CrossRefGoogle ScholarPubMed
Sato, Y., Terauchi, M., Saito, Y. & Saito, R. (2006). High energy-resolution electron energy-loss spectroscopy study of the electric structure of double-walled carbon nanotubes. J Electron Microsc 55, 137142.Google Scholar
Sato, Y., Terauchi, M., Saito, Y., Sato, K. & Saito, R. (2008). Relation between peak structures of loss functions of single double-walled carbon nanotubes and interband transition energies. J. Electron Microsc 57, 129132.Google Scholar
Slater, J.C. (1951). A simplification of the Hartree-Fock method. Phys Rev 81, 385390.Google Scholar
Spataru, C.D., Ismail-Beigi, S., Benedict, L.X. & Louie, S.G. (2004). Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys Rev Lett 92, 077402.CrossRefGoogle ScholarPubMed
Stéphan, O., Taverna, D., Kociak, M., Suenaga, K., Henrard, L. & Colliex, C. (2002). Dielectric response of isolated carbon nanotubes investigated by spatially resolved electron energy-loss spectroscopy: From multiwalled to single-walled nanotubes. Phys Rev B 66, 155422.Google Scholar
Taverna, D., Kociak, M., Charbois, V. & Henrard, L. (2002). Electron energy-loss spectrum of an electron passing near a locally anisotropic nanotube. Phys Rev B 66, 235419.Google Scholar
Tosatti, E. & Bassani, F. (1970). Optical constants of graphite. IL Nuovo Cimento 65, 161173.Google Scholar
Tsuda, K., Ogata, Y., Takagi, K., Hashimoto, T. & Tanaka, M. (2002). Refinement of crystal structural parameters and charge density using convergent-beam electron diffraction—The rhombohedral phase of LaCrO3 . Acta Cryst A58, 514525.Google Scholar
Tsuda, K. & Tanaka, M. (1999). Refinement of crystal structural parameters using two-dimensional energy-filtered CBED patterns. Acta Cryst A55, 939954.Google Scholar
Ugarte, D., Colliex, C. & Trebbia, T. (1992). Surface- and interface-plasmon modes on small semiconducting spheres. Phys Rev B 45, 43324343.Google Scholar
Urita, K., Suenaga, K., Sugai, T., Shinohara, H. & Iijima, S. (2005). In situ observation of thermal relaxation of interstitial-vacancy pair defects in a gaphite gap. Phys Rev Lett 94, 155502.Google Scholar
Wang, F., Dukovic, G., Brus, L.E. & Heinz, T.F. (2005). The optical resonances in carbon nanotubes arise from excitons. Science 308, 838841.Google Scholar
Wang, Z.L. & Crowley, J.M. (1987). Surface plasmon excitation for supported metal particles. Ultramicroscopy 21, 7793.CrossRefGoogle Scholar
Zhao, H. & Mazumdar, S. (2004). Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes. Phys Rev Lett 93, 157402.Google Scholar