Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T22:08:45.919Z Has data issue: false hasContentIssue false

Hardening of Aged Duplex Stainless Steels by Spinodal Decomposition

Published online by Cambridge University Press:  01 June 2004

F. Danoix
Affiliation:
Institut des Matériaux, Unité Mixte de Recherche CNRS 6634, Université de Rouen, BP12, 76 801 Saint Etienne du Rouvray Cedex, France
P. Auger
Affiliation:
Institut des Matériaux, Unité Mixte de Recherche CNRS 6634, Université de Rouen, BP12, 76 801 Saint Etienne du Rouvray Cedex, France
D. Blavette
Affiliation:
Institut des Matériaux, Unité Mixte de Recherche CNRS 6634, Université de Rouen, BP12, 76 801 Saint Etienne du Rouvray Cedex, France
Get access

Abstract

Mechanical properties, such as hardness and impact toughness, of ferrite-containing stainless steels are greatly affected by long-term aging at intermediate temperatures. It is known that the α-α′ spinodal decomposition occurring in the iron–chromium-based ferrite is responsible for this aging susceptibility. This decomposition can be characterized unambiguously by atom probe analysis, allowing comparison both with the existing theories of spinodal decomposition and the evolution of some mechanical properties. It is then possible to predict the evolution of hardness of industrial components during service, based on the detailed knowledge of the involved aging process.

Type
Research Article
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Auger, P., Danoix, F., Menand, A., Bonnet, S., Bourgoin, J., & Guttmann, M. (1990). Atom-probe and transmission electron microscopy study of aging of cast duplex stainless steels. Mater Sci Technol 6, 301313.Google Scholar
Auger, P., Menand, A., & Blavette, D. (1988). Statistical analysis of atom-probe data (II): Theoretical frequency distributions for periodic fluctuations and some applications. J de Phys 49-C6, 439444.Google Scholar
Blavette, D., Bostel, A., Sarrau, J.M., Deconihout, B., & Menand, A. (1993). An atom-probe for three dimensional tomography. Nature 363, 432435.Google Scholar
Blavette, D., Grancher, G., & Bostel, A. (1988). Statistical analysis of atom-probe data (I): Derivation of some fine scale features from frequency distributions for finely dispersed systems. J de Phys 49-C6, 433438.Google Scholar
Bonnet, S., Bourgoin, J., Champredonde, J., Guttmann, D., & Guttmann, M. (1990). Relationship between evolution of mechanical properties of various cast duplex stainless steel and metallurgical and aging parameters: Outline of current EDF programmes. Mater Sci Technol 6, 221229.Google Scholar
Brenner, S.S., Miller, M.K., & Soffa, W.A. (1982). Spinodal decomposition of Fe-32at%Cr at 470°C. Scripta Met Mat 16, 831836.Google Scholar
Cahn, J.W. (1968). Spinodal decomposition. Trans AIME 242, 166180.Google Scholar
Chung, H.M. & Leax, T.R. (1990). Embrittlement of laboratory and reactor aged CF3, CF8 and CF8M duplex stainless steels. Mater Sci Technol 6, 249262.Google Scholar
Danoix, F. & Auger, P. (2000). Atom probe studies of the Fe-Cr system and stainless steels aged at intermediate temperature: A review. Mater Charact 44, 177201.Google Scholar
Danoix, F., Auger, P., & Blavette, D. (1992). An atom-probe investigation of some correlated phase transformation in chromium, nickel and molybdenum containing supersaturated ferrites. Surf Sci 266, 364369.Google Scholar
Danoix, F., Auger, P., Bostel, A., & Blavette, D. (1991). Atom probe characterization of isotropic spinodal decomposition: Spatial convolutions and related bias. Surf Sci 246, 260265.Google Scholar
Danoix, F., Auger, P., Chambreland, S., & Blavette, D. (1994). A 3D study of G-phase precipitation in spinodally decomposed α-ferrite by tomographic atom probe analysis. Microsc Microanal Microstruct 5, 121132.Google Scholar
Danoix, F., Bas, P., Massoud, J.P., Guttmann, M., & Auger, P. (1993). Atom probe and transmission electron microscope study of reverted duplex stainless steels. Appl Surf Sci 67, 348355.Google Scholar
Deconihout, B., Bostel, A., Bas, P., Chambreland, S., Letellier, L., Danoix, F., & Blavette, D. (1994). Investigation of some selected metallurgical problems with the tomographic atom probe. Appl Surf Sci 76/77, 145154.Google Scholar
Godfrey, T.J. & Smith, G.D.W. (1986). The atom probe analysis of cast duplex stainless steels. J de Phys 47-C7, 217222.Google Scholar
Langer, J.S., Bar-On, M., & Miller, H.D. (1975). New computational method in the theory of spinodal decomposition. Phys Rev A 11, 14171429.Google Scholar
Leax, T.R., Brenner, S.S., & Spitznagel, J.A. (1992). Atom-probe examination of thermally aged CF8M cast stainless steel. Metall Trans A 23, 27252736.Google Scholar
Miller, M.K., Bentley, J., Brenner, S.S., & Spitznagel, J.A. (1984). Long term thermal aging of type CF8 stainless steel. J de Phys 45-C9, 385390.Google Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G., & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford, UK: Oxford University Press.
Miller, M.K. & Hetherington, M.G. (1990). Morphological and scaling behaviour of ultrafine isotropic microstructures in Fe-Cr alloys from atom-probe field ion microscopy data. Scripta Met Mat 24, 13751380.Google Scholar
Newell, H.D. (1949). Properties and characteristics of 27% chromium-iron. Metals Progs 49, 9771006.Google Scholar
Park, K.H., LaSalle, J.C., Schwartz, L.H., & Kato, M. (1986). Mechanical properties of spinodally decomposed Fe-30wt%Cr: Yield strength and embrittlement. Acta Metall 34, 18531865.Google Scholar
Pumphrey, P.H. & Akhurst, K.N. (1990). Aging kinetics of CF3 cast stainless steel in temperature range 300–400°C. Mater Sci Technol 6, 211220.Google Scholar
Pumphrey, P.H., Smith, G.D.W., & Prager, M. (Eds.). (1990). Proceedings of the International Workshop on Intermediate Temperature Embrittlement Processes in Duplex Stainless Steels, Mater Sci Technol 6, 1111.Google Scholar
Triki, A. (1990). Influence de la demixtion sur les proprietes mecaniques des alliages Fe-Cr. Ph.D. thesis, Grenoble, France: University of Grenoble.
Williams, R.O. & Praxton, H.W. (1957). The nature of the aging of binary iron-chromium alloys around 500°C. J Iron Steel Inst 185, 358374.Google Scholar