Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T17:13:59.403Z Has data issue: false hasContentIssue false

The Hair Follicle Bulge: A Niche for Adult Stem Cells

Published online by Cambridge University Press:  05 July 2011

Hilda Amalia Pasolli
Affiliation:
Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
Get access

Abstract

Adult stem cells (SCs) are essential for tissue homeostasis and wound repair. They have the ability to both self-renew and differentiate into multiple cell types. They often reside in specialized microenvironments or niches that preserve their proliferative and tissue regenerative capacity. The murine hair follicle (HF) has a specialized and permanent compartment—the bulge, which safely lodges SCs and provides the necessary molecular cues to regulate their function. The HF undergoes cyclic periods of destruction, regeneration, and rest, making it an excellent system to study SC biology.

Type
Research Article
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, K., Hashiyama, M., MacGregor, G. & Yamamura, K. (1996). Purification of primordial germ cells from TNAPbeta-geo mouse embryos using FACS-gal. Dev Biol 180(2), 468472.CrossRefGoogle ScholarPubMed
Blanpain, C. & Fuchs, E. (2009). Epidermal homeostasis: A balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10(3), 207217.CrossRefGoogle ScholarPubMed
Blanpain, C., Lowry, W.E., Geoghegan, A., Polak, L. & Fuchs, E. (2004). Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118(5), 635648.CrossRefGoogle ScholarPubMed
Claudinot, S., Nicolas, M., Oshima, H., Rochat, A. & Barrandon, Y. (2005). Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc Natl Acad Sci USA 102(41), 1467714682.CrossRefGoogle ScholarPubMed
Cotsarelis, G., Sun, T.T. & Lavker, R.M. (1990). Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61(7), 13291337.CrossRefGoogle ScholarPubMed
Dry, F. (1926). The coat of the mouse (Mus musculus). J Genet 16(3), 287340.CrossRefGoogle Scholar
Fuchs, E. (2007). Scratching the surface of skin development. Nature 445(7130), 834842.CrossRefGoogle ScholarPubMed
Fuchs, E. & Nowak, J.A. (2008). Building epithelial tissues from skin stem cells. Cold Spring Harb Symp Quant Biol 73, 333350.CrossRefGoogle ScholarPubMed
Greco, V., Chen, T., Rendl, M., Schober, M., Pasolli, H.A., Stokes, N., Dela Cruz-Racelis, J. & Fuchs, E. (2009). A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4(2), 155169.CrossRefGoogle ScholarPubMed
Hardy, M.H. (1992). The secret life of the hair follicle. Trends Genet 8(2), 5561.CrossRefGoogle ScholarPubMed
Horsley, V., Aliprantis, A.O., Polak, L., Glimcher, L.H. & Fuchs, E. (2008). NFATc1 balances quiescence and proliferation of skin stem cells. Cell 132, 299310.CrossRefGoogle ScholarPubMed
Horsley, V., O'Carroll, D., Tooze, R., Ohinata, Y., Saitou, M., Obukhanych, T., Nussenzweig, M., Tarakhovsky, A. & Fuchs, E. (2006). Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 126(3), 597609.CrossRefGoogle Scholar
Hsu, C.L., Hoepting, C.A., Fuchs, M., Shelton, A.M. & Nault, B.A. (2010). Temporal dynamics of iris yellow spot virus and its vector, Thrips tabaci (Thysanoptera: Thripidae), in seeded and transplanted onion fields. Environ Entomol 39(2), 266277.CrossRefGoogle ScholarPubMed
Hsu, Y.C., Pasolli, H.A. & Fuchs, E. (2011). Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144(1), 92105.CrossRefGoogle ScholarPubMed
Ito, M., Kizawa, K., Hamada, K. & Cotsarelis, G. (2004). Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation 72(9-10), 548557.CrossRefGoogle ScholarPubMed
Ito, M., Liu, Y., Yang, Z., Nguyen, J., Liang, F., Morris, R.J. & Cotsarelis, G. (2005). Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11(12), 13511354.CrossRefGoogle Scholar
Jaks, V., Barker, N., Kasper, M., van Es, J.H., Snippert, H.J., Clevers, H. & Toftgard, R. (2008). Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40(11), 12911299.CrossRefGoogle ScholarPubMed
Lyle, S., Christofidou-Solomidou, M., Liu, Y., Elder, D.E., Albelda, S. & Cotsarelis, G. (1999). Human hair follicle bulge cells are biochemically distinct and possess an epithelial stem cell phenotype. J Investig Dermatol Symp Proc 4(3), 296301.CrossRefGoogle ScholarPubMed
Morris, R.J., Liu, Y., Marles, L., Yang, Z., Trempus, C., Li, S., Lin, J.S., Sawicki, J.A. & Cotsarelis, G. (2004). Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22(4), 411417.CrossRefGoogle ScholarPubMed
Muller-Rover, S., Handjiski, B., van der Veen, C., Eichmuller, S., Foitzik, K., McKay, I.A., Stenn, K.S. & Paus, R. (2001). A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117(1), 315.CrossRefGoogle ScholarPubMed
Muller-Rover, S., Tokura, Y., Welker, P., Furukawa, F., Wakita, H., Takigawa, M. & Paus, R. (1999). E- and P-cadherin expression during murine hair follicle morphogenesis and cycling. Exp Dermatol 8(4), 237246.CrossRefGoogle ScholarPubMed
Nguyen, H., Rendl, M. & Fuchs, E. (2006). Tcf3 governs stem cell features and represses cell fate determination in skin. Cell 127(1), 171183.CrossRefGoogle ScholarPubMed
Oliver, R.F. & Jahoda, C.A.B. (1988). Dermal-epidermal interactions. Clin Dermatol 6(4), 7482.CrossRefGoogle ScholarPubMed
Panteleyev, A.A., Jahoda, C.A. & Christiano, A.M. (2001). Hair follicle predetermination. J Cell Sci 114(Pt 19), 34193431.CrossRefGoogle ScholarPubMed
Rhee, H., Polak, L. & Fuchs, E. (2006). Lhx2 maintains stem cells character in hair follicles. Science 312, 19461949.CrossRefGoogle ScholarPubMed
Stenn, K.S. & Paus, R. (2001). Controls of hair follicle cycling. Physiol Rev 81(1), 449494.CrossRefGoogle ScholarPubMed
Trempus, C.S., Morris, R.J., Bortner, C.D., Cotsarelis, G., Faircloth, R.S., Reece, J.M. & Tennant, R.W. (2003). Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J Invest Dermatol 120(4), 501511.Google ScholarPubMed
Tumbar, T., Guasch, G., Greco, V., Blanpain, C., Lowry, W.E., Rendl, M. & Fuchs, E. (2004). Defining the epithelial stem cell niche in skin. Science 303(5656), 359363.CrossRefGoogle ScholarPubMed
Unna, P.G. (1876). Beitrage zur histologie und entwicklungsgeschichte der menschlichen oberhaut und ihrer anhangsgebilde. Arch Mikroskop Anat Entwicklungsmech 12, 665741.CrossRefGoogle Scholar