Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-03T17:55:03.507Z Has data issue: false hasContentIssue false

FT-Raman Spectroscopy Study of Organic Matrix Degradation in Nanofilled Resin Composite

Published online by Cambridge University Press:  07 February 2013

Luís Eduardo Silva Soares*
Affiliation:
Department of Dental Materials and Operative Dentistry, School of Dentistry, University of Vale do Paraíba, UNIVAP, São José dos Campos, SP, Brazil Laboratory of Biomedical Vibrational Spectroscopy, Research and Development Institute, IP&D, University of Vale do Paraíba, UNIVAP, São José dos Campos, SP, Brazil
Sídnei Nahórny
Affiliation:
Laboratory of Biomedical Vibrational Spectroscopy, Research and Development Institute, IP&D, University of Vale do Paraíba, UNIVAP, São José dos Campos, SP, Brazil
Airton Abrahão Martin
Affiliation:
Laboratory of Biomedical Vibrational Spectroscopy, Research and Development Institute, IP&D, University of Vale do Paraíba, UNIVAP, São José dos Campos, SP, Brazil
*
*Corresponding author.[email protected]
Get access

Abstract

This in vitro study evaluated the effect of light curing unit (LCU) type, mouthwashes, and soft drink on chemical degradation of a nanofilled resin composite. Samples (80) were divided into eight groups: halogen LCU, HS—saliva (control); HPT—Pepsi Twist®; HLC—Listerine®; HCP—Colgate Plax®; LED LCU, LS—saliva (control); LPT—Pepsi Twist®; LLC—Listerine®; LCP—Colgate Plax®. The degree of conversion analysis and the measure of the peak area at 2,930 cm−1 (organic matrix) of resin composite were done by Fourier-transform Raman spectroscopy (baseline, after 7 and 14 days). The data were subjected to multifactor analysis of variance (ANOVA) at a 95% confidence followed by Tukey's HSD post-hoc test. The DC ranged from 58.0% (Halogen) to 59.3% (LED) without significance. Differences in the peak area between LCUs were found after 7 days of storage in S and PT. A marked increase in the peak intensity of HLC and LLC groups was found. The soft-start light-activation may influence the chemical degradation of organic matrix in resin composite. Ethanol contained in Listerine® Cool Mint mouthwash had the most significant degradation effect. Raman spectroscopy is shown to be a useful tool to investigate resin composite degradation.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, G.S., Poskus, L.T., Guimarães, J.G.A. & Da Silva, E.M. (2010). The effect of mouthrinses on salivary sorption, solubility and surface degradation of a nanofilled and a hybrid resin composite. Operat Dent 35, 105111.CrossRefGoogle Scholar
Asmussen, E. & Peutzfeldt, A. (2001). Influence of selected components on crosslink density in polymer structures. Eur J Oral Sci 109, 282285.CrossRefGoogle ScholarPubMed
Asmussen, E. & Peutzfeldt, A. (2003). Two-step curing: Influence on conversion and softening of a dental polymer. Dent Mater 19, 466470.CrossRefGoogle ScholarPubMed
Benetti, A.R., Asmussen, E., Munksgaard, E.C., Dewaele, M., Peutzfeldt, A., Leloup, G. & Devaux, J. (2009). Softening and elution of monomers in ethanol. Dent Mater 25, 10071013.CrossRefGoogle ScholarPubMed
Catelan, A., Briso, A.L, Sundfeld, R.H. & Dos Santos, P.H. (2010). Effect of artificial aging on the roughness and microhardness of sealed composites. J Esthet Rest Dent 22, 324330.CrossRefGoogle ScholarPubMed
Colucci, V., Dos Santos, C.D., Do Amaral, F.L., Corona, A.S. & Catirse, A.B. (2009). Influence of NaHCO3 powder on translucency of microfilled composite resin immersed in different mouthrinses. J Esthet Rest Dent 21, 242250.CrossRefGoogle ScholarPubMed
Curtis, A.R., Shortall, A.C., Marquis, P.M. & Palin, W.M. (2008). Water uptake and strength characteristics of a nanofilled resin-based composite. J Dent 36, 186193.CrossRefGoogle ScholarPubMed
da Silva, E.M., Almeida, G.S., Poskus, L.T. & Guimarães, J.G.A. (2008). Relationship between the degree of conversion, solubility and salivary sorption of a hybrid and a nanofilled resin composite: Influence of the light-activation mode. J Appl Oral Sci 16, 161166.CrossRefGoogle Scholar
da Silva, E.M., Gonçalves, L., Guimarães, J.G., Poskus, L.T. & Fellows, CE. (2011). The diffusion kinetics of a nanofilled and a midifilled resin composite immersed in distilled water, artificial saliva, and lactic acid. Clinical Oral Invest 15, 393401.CrossRefGoogle Scholar
Dos Santos, P.A., Garcia, P.P.N.S., De Oliveira, A.L.B.M., Chinelatti, M.A. & Palma-Dibb, R.G. (2010). Chemical and morphological features of dental composite resin: Influence of light curing units and immersion media. Microsc Res Techniq 73, 176181.CrossRefGoogle ScholarPubMed
Ferracane, J.L. (2006). Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater 22, 211222.CrossRefGoogle ScholarPubMed
Festuccia, M.S., Garcia, L. da F., Cruvinel, D.R. & Pires-De-Souza, F. de C. (2012). Color stability, surface roughness and microhardness of composites submitted to mouthrinsing action. J Appl Oral Sci 20, 200205.CrossRefGoogle ScholarPubMed
Gürdal, P., Akdeniz, B.G. & Hakan Sen, B. (2002). The effects of mouthrinses on microhardness and colour stability of aesthetic restorative materials. J Oral Rehab 29, 895901.CrossRefGoogle ScholarPubMed
Hahnel, S., Henrich, A., Bürgers, R., Handel, G. & Rosentritt, M. (2010). Investigation of mechanical properties of modern dental composites after artificial aging for one year. Operat Dent 35, 412419.CrossRefGoogle ScholarPubMed
Hannig, C., Duong, S., Becker, K., Brunner, E., Kahler, E. & Attin, T. (2007). Effect of bleaching on subsurface micro-hardness of composite and a polyacid modified composite. Dent Mater 23, 198203.CrossRefGoogle Scholar
Lee, S.Y., Huang, H.M., Lin, C.Y. & Shih, Y.H. (1998). Leached components from dental composites in oral simulating fluids and the resultant composite strengths. J Oral Rehab 25, 575588.CrossRefGoogle ScholarPubMed
Luiz, B.K.M., Quintella, C.M., Friedrich, L.A., da Silva, E.B., Veiga, W., Prates, L.H.M., Bertolino, J.R. & Pires, A.T.N. (2007). Effect of drinks on the surface properties of dental resin composites. Polym Test 26, 855861.CrossRefGoogle Scholar
Nose, A. & Hojo, M. (2006). Hydrogen bonding of water–ethanol in alcoholic beverages. J Biosci Bioeng 102, 269280.CrossRefGoogle ScholarPubMed
Pfeifer, C.S., Silva, L.R., Kawano, Y. & Braga, R.R. (2009). Bis-GMA co-polymerizations: Influence on conversion, flexural properties, fracture toughness and susceptibilityethanol degradation of experimental composites. Dent Mater 25, 11361141.CrossRefGoogle ScholarPubMed
Pontefract, H., Hughes, J., Kemp, K., Yates, R., Newcombe, R.G. & Addy, M. (2001). The erosive effects of some mouth rinses on enamel. A study in situ . J Clin Periodontol 28, 319324.CrossRefGoogle ScholarPubMed
Raman, C.V. & Krishnan, K.S. (1928). A new type of secondary radiation. Nature 121, 501502.CrossRefGoogle Scholar
Sadaghiani, L., Wilson, M.A. & Wilson, N.H.F. (2007). Effect of selected mouthwashes on the surface roughness of resin modified glass-ionomer restorative materials. Dent Mater 23, 325334.CrossRefGoogle ScholarPubMed
Sideridou, I.D., Karabela, M.M. & Vouvoudi, E.C. (2008). Dynamic thermomechanical properties and sorption characteristics of two commercial light cured dental resin composites. Dent Mater 24, 737743.CrossRefGoogle ScholarPubMed
Soares, L.E.S., Cesar, I.C.R., Santos, C.G.C., Cardoso, A.L.M.O., Liporoni, P.C.S., Munin, E. & Martin, A.A. (2007a). Influence of coffee on reflectance and chemistry of resin composite protected by surface sealant. Am J Dent 20, 299304.Google ScholarPubMed
Soares, L.E.S., Cortez, L.R., Zarur, R.O. & Martin, A.A. (2012). Scanning electron microscopy and roughness study of dental composite degradation. Microsc Microanal 18, 16.CrossRefGoogle ScholarPubMed
Soares, L.E.S., Liporoni, P.C.S. & Martin, A.A. (2007b). Effect of the soft-start polymerization by the second generation LEDs on the degree of conversion of resin composite. Oper Dent 32, 155160.CrossRefGoogle ScholarPubMed
Yap, A.U., Tan, S.H., Wee, S.S., Lee, C.W., Lim, E.L. & Zeng, K.Y. (2001). Chemical degradation of composite restoratives. J Oral Rehab 28, 10151021.CrossRefGoogle ScholarPubMed
Yeh, S.T., Wang, H.T., Liao, H.Y., Su, S.L., Chang, C.C., Kao, H.C. & Lee, B.S. (2011). The roughness, microhardness, and surface analysis of nanocomposites after application of topical fluoride gels. Dent Mater 27, 187196.CrossRefGoogle ScholarPubMed
Yesilyurt, C., Yoldas, O., Altintas, S.H. & Kusgoz, A. (2009). Effects of food-simulating liquids on the mechanical properties of a siloranebased dental composite. Dent Mater J 28, 362367.CrossRefGoogle ScholarPubMed
Yu, Y., Lin, K., Zhou, X., Wang, H., Liu, S. & Ma, X. (2007). New C-H stretching vibrational spectral features in the Raman spectra of gaseous and liquid ethanol. J Phys Chem C 111, 89718978.CrossRefGoogle Scholar
Zhang, Y. & Xu, J. (2008). Effect of immersion in various media on the sorption, solubility, elution of unreacted monomers, and flexural properties of two model dental composite compositions. J Mater Sci Mater Med 9, 24772483.CrossRefGoogle Scholar