Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T04:48:18.735Z Has data issue: false hasContentIssue false

Fractal and Lacunarity Analyses: Quantitative Characterization of Hierarchical Surface Topographies

Published online by Cambridge University Press:  13 January 2016

Edwin J. Y. Ling
Affiliation:
Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec, Canada, H3A 0C5
Phillip Servio
Affiliation:
Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec, Canada, H3A 0C5
Anne-Marie Kietzig*
Affiliation:
Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec, Canada, H3A 0C5
*
*Corresponding author. [email protected]
Get access

Abstract

Biomimetic hierarchical surface structures that exhibit features having multiple length scales have been used in many technological and engineering applications. Their surface topographies are most commonly analyzed using scanning electron microscopy (SEM), which only allows for qualitative visual assessments. Here we introduce fractal and lacunarity analyses as a method of characterizing the SEM images of hierarchical surface structures in a quantitative manner. Taking femtosecond laser-irradiated metals as an example, our results illustrate that, while the fractal dimension is a poor descriptor of surface complexity, lacunarity analysis can successfully quantify the spatial texture of an SEM image; this, in turn, provides a convenient means of reporting changes in surface topography with respect to changes in processing parameters. Furthermore, lacunarity plots are shown to be sensitive to the different length scales present within a hierarchical structure due to the reversal of lacunarity trends at specific magnifications where new features become resolvable. Finally, we have established a consistent method of detecting pattern sizes in an image from the oscillation of lacunarity plots. Therefore, we promote the adoption of lacunarity analysis as a powerful tool for quantitative characterization of, but not limited to, multi-scale hierarchical surface topographies.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmmed, K., Grambow, C. & Kietzig, A.-M. (2014). Fabrication of micro/nano structures on metals by femtosecond laser micromachining. Micromachines 5(4), 12191253.CrossRefGoogle Scholar
Ahmmed, K.M.T., Ling, E.J.Y., Servio, P. & Kietzig, A.-M. (2015). Introducing a new optimization tool for femtosecond laser-induced surface texturing on titanium, stainless steel, aluminum and copper. Opt Lasers Eng 66, 258268.CrossRefGoogle Scholar
Al-Kadi, O.S. & Watson, D. (2008). Texture analysis of aggressive and nonaggressive lung tumor CE CT images. IEEE Trans Biomed Eng 55(7), 18221830.CrossRefGoogle ScholarPubMed
Allain, C. & Cloitre, M. (1991). Characterizing the lacunarity of random and deterministic fractal sets. Phys Rev A 44(6), 35523558.CrossRefGoogle ScholarPubMed
Alvarez, A.C., Passé-Coutrin, N. & Gaspard, S. (2013). Determination of the textural characteristics of carbon samples using scanning electronic microscopy images: Comparison with mercury porosimetry data. Adsorption 19(2–4), 841850.CrossRefGoogle Scholar
Barthlott, W. & Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1), 18.CrossRefGoogle Scholar
Bharati, M.H., Liu, J.J. & MacGregor, J.F. (2004). Image texture analysis: Methods and comparisons. Chemometr Intell Lab Syst 72(1), 5771.CrossRefGoogle Scholar
Bhushan, B. (2012). Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology. Berlin: Springer-Verlag Berlin Heidelberg.CrossRefGoogle Scholar
Bhushan, B., Jung, Y.C. & Koch, K. (2009). Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos Trans A Math Phys Eng Sci 367, 16311672.Google ScholarPubMed
Butson, C.R. & King, D.J. (2006). Lacunarity analysis to determine optimum extents for sample-based spatial information extraction from high-resolution forest imagery. Int J Remote Sens 27(1), 105120.CrossRefGoogle Scholar
Chen, S.S., Keller, J.M. & Crownover, R.M. (1993). On the calculation of fractal features from images. IEEE Trans Pattern Anal Mach Intell 15(10), 10871090.CrossRefGoogle Scholar
Cutting, J.E. & Garvin, J.J. (1987). Fractal curves and complexity. Percept Psychophys 42(4), 365370.CrossRefGoogle ScholarPubMed
Dale, M.R.T. (2000). Lacunarity analysis of spatial pattern: A comparison. Landscape Ecol 15(5), 467478.CrossRefGoogle Scholar
Dale, M.R.T., Dixon, P., Fortin, M.-J., Legendre, P., Myers, D.E. & Rosenberg, M.S. (2002). Conceptual and mathematical relationships among methods for spatial analysis. Ecography 25(5), 558577.CrossRefGoogle Scholar
Davies, E.R. (2008). Introduction to texture analysis. In Handbook of Texture Analysis, Mirmehdi, M., Xie, X. & Suri, J. (Eds.), pp. 131. London: Imperial College Press.Google Scholar
Demir, A.G., Furlan, V., Lecis, N. & Previtali, B. (2014). Laser surface structuring of AZ31 Mg alloy for controlled wettability. Biointerphases 9(2), 029009.CrossRefGoogle Scholar
Dubuisson, M.-P. & Dubes, R.C. (1994). Efficacy of fractal features in segmenting images of natural textures. Pattern Recognit Lett 15(4), 419431.CrossRefGoogle Scholar
Ellinas, K., Tserepi, A. & Gogolides, E. (2011). From superamphiphobic to amphiphilic polymeric surfaces with ordered hierarchical roughness fabricated with colloidal lithography and plasma nanotexturing. Langmuir 27(7), 39603969.CrossRefGoogle ScholarPubMed
Falconer, K. (1990). Fractal Geometry: Mathematical Foundations and Applications. West Sussex, England: John Wiley & Sons Ltd.Google Scholar
Feng, J., Tuominen, M.T. & Rothstein, J.P. (2011). Hierarchical superhydrophobic surfaces fabricated by dual-scale electron-beam-lithography with well-ordered secondary nanostructures. Adv Funct Mater 21(19), 37153722.CrossRefGoogle Scholar
Gårding, J. (1988). Properties of fractal intensity surfaces. Pattern Recognit Lett 8(5), 319324.CrossRefGoogle Scholar
Gefen, Y., Meir, Y., Mandelbrot, B.B. & Aharony, A. (1983). Geometric implementation of hypercubic lattices with noninteger dimensionality by use of low lacunarity fractal lattices. Phys Rev Lett 50(3), 145148.CrossRefGoogle Scholar
Gerasopoulos, K., Pomerantseva, E., McCarthy, M., Brown, A., Wang, C., Culver, J. & Ghodssi, R. (2012). Hierarchical three-dimensional microbattery electrodes combining bottom-up self-assembly and top-down micromachining. ACS Nano 6(7), 64226432.CrossRefGoogle ScholarPubMed
Ho, A.Y.Y., Yeo, L.P., Lam, Y.C. & Rodríguez, I. (2011). Fabrication and analysis of gecko-inspired hierarchical polymer nanosetae. ACS Nano 5(3), 18971906.CrossRefGoogle ScholarPubMed
Jagdheesh, R., Pathiraj, B., Karatay, E., Römer, G.R.B.E. & Huis in’t Veld, A.J. (2011). Laser-induced nanoscale superhydrophobic structures on metal surfaces. Langmuir 27(13), 84648469.CrossRefGoogle ScholarPubMed
Jelinek, H.F. & Fernandez, E. (1998). Neurons and fractals: How reliable and useful are calculations of fractal dimensions? J Neurosci Methods 81(1–2), 918.CrossRefGoogle ScholarPubMed
Jung, Y.C. & Bhushan, B. (2010). Biomimetic structures for fluid drag reduction in laminar and turbulent flows. J Phys Condens Matter 22(3), 035104.CrossRefGoogle ScholarPubMed
Karperien, A. (2002–2014). FracLac for ImageJ. http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm (accessed April 2014).Google Scholar
Karperien, A., Ahammer, H. & Jelinek, H. (2013). Quantitating the subtleties of microglial morphology with fractal analysis. Front Cell Neurosci 7.CrossRefGoogle ScholarPubMed
Keller, J.M., Chen, S. & Crownover, R.M. (1989). Texture description and segmentation through fractal geometry. Comput Vis Graph Image Process 45(2), 150166.CrossRefGoogle Scholar
Kenkel, N.C. & Walker, D.J. (1993). Fractals and ecology. Abstracta Botanica 17(1–2), 5370.Google Scholar
Khorasani, H., Zheng, Z., Nguyen, C., Zara, J., Zhang, X., Wang, J., Ting, K. & Soo, C. (2011). A quantitative approach to scar analysis. Am J Pathol 178(2), 621628.CrossRefGoogle ScholarPubMed
Kietzig, A.-M., Hatzikiriakos, S.G. & Englezos, P. (2009). Patterned superhydrophobic metallic surfaces. Langmuir 25(8), 48214827.CrossRefGoogle ScholarPubMed
Lehr, J. & Kietzig, A.-M. (2014). Production of homogenous micro-structures by femtosecond laser micro-machining. Opt Lasers Eng 57, 121129.CrossRefGoogle Scholar
Ling, E.J.Y., Saïd, J., Brodusch, N., Gauvin, R., Servio, P. & Kietzig, A.-M. (2015). Investigating and understanding the effects of multiple femtosecond laser scans on the surface topography of stainless steel 304 and titanium. Appl Surf Sci 353, 512521.CrossRefGoogle Scholar
Malhi, Y. & Román-Cuesta, R.M. (2008). Analysis of lacunarity and scales of spatial homogeneity in IKONOS images of Amazonian tropical forest canopies. Remote Sens Environ 112(5), 20742087.CrossRefGoogle Scholar
Mandelbrot, B.B. (1983). The Fractal Geometry of Nature. New York, USA: W. H. Freeman and Company.CrossRefGoogle Scholar
Manera, M., Dezfuli, B.S., Borreca, C. & Giari, L. (2014). The use of fractal dimension and lacunarity in the characterization of mast cell degranulation in rainbow trout (Oncorhynchus mykiss). J Microsc 256(2), 8289.CrossRefGoogle Scholar
Moradi, S., Kamal, S., Englezos, P. & Hatzikiriakos, S.G. (2013). Femtosecond laser irradiation of metallic surfaces: Effects of laser parameters on superhydrophobicity. Nanotechnology 24(41), 415302.CrossRefGoogle ScholarPubMed
Myint, S.W. & Lam, N. (2005). A study of lacunarity-based texture analysis approaches to improve urban image classification. Comput Environ Urban Syst 29(5), 501523.CrossRefGoogle Scholar
Nakayama, K., Tsuji, E., Aoki, Y. & Habazaki, H. (2014). Fabrication of superoleophobic hierarchical surfaces for low-surface-tension liquids. RSC Adv 4(58), 3092730933.CrossRefGoogle Scholar
Nayak, B.K. & Gupta, M.C. (2010). Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation. Opt Lasers Eng 48(10), 940949.CrossRefGoogle Scholar
Neumann, G.T. & Hicks, J.C. (2012). Novel hierarchical cerium-incorporated MFI zeolite catalysts for the catalytic fast pyrolysis of lignocellulosic biomass. ACS Catal 2(4), 642646.CrossRefGoogle Scholar
Noh, J., Lee, J.-H., Na, S., Lim, H. & Jung, D.-H. (2010). Fabrication of hierarchically micro- and nano-structured mold surfaces using laser ablation for mass production of superhydrophobic surfaces. Jpn J Appl Phys 49, 106502.CrossRefGoogle Scholar
Nosonovsky, M. & Bhushan, B. (2008). Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics. Berlin and Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
PALAZOGLU, A., STROEVE, P. & ROMAGNOLI, J.A. (2010). Wavelet analysis of images from scanning probe and electron microscopy. In Microscopy: Science, Technology, Applications and Education, Méndez-Vilas, A. and Díaz, J. (Eds.), pp. 1251–1262. Badajoz, Spain: Formatex.Google Scholar
Pentland, A.P. (1984). Fractal-based description of natural scenes. IEEE Trans Pattern Anal Mach Intell 6(6), 661674.CrossRefGoogle ScholarPubMed
Plotnick, R.E., Gardner, R.H., Hargrove, W.W., Prestegaard, K. & Perlmutter, M. (1996). Lacunarity analysis: A general technique for the analysis of spatial patterns. Phys Rev E 53(5), 54615468.CrossRefGoogle ScholarPubMed
Plotnick, R.E., Gardner, R.H. & O’Neill, R.V. (1993). Lacunarity indices as measures of landscape texture. Landscape Ecol 8(3), 201211.CrossRefGoogle Scholar
Rasband, W. (1997–2014). ImageJ. http://imagej.nih.gov/ij/ (accessed December 2009).Google Scholar
Rivera-Virtudazo, R., Tapia, A., Valenzuela, J., Cruz, L., Mendoza, H. & Castriciones, E. (2009). Lacunarity analysis of TEM images of heat-treated hybrid organosilica materials. In Innovations in Chemical Biology, Şener, B. (Ed.), pp. 397403. Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
Sarkar, N. & Chaudhuri, B.B. (1994). An efficient differential box-counting approach to compute fractal dimension of image. IEEE Trans Syst Man Cybern 24(1), 115120.CrossRefGoogle Scholar
Saunders, S.C., Chen, J., Drummer, T.D., Gustafson, E.J. & Brosofske, K.D. (2005). Identifying scales of pattern in ecological data: A comparison of lacunarity, spectral and wavelet analyses. Ecol Complexity 2(1), 87105.CrossRefGoogle Scholar
Shao, F., Sun, J., Gao, L., Yang, S. & Luo, J. (2011). Template-free synthesis of hierarchical TiO2 structures and their application in dye-sensitized solar cells. ACS Appl Mater Interfaces 3(6), 21482153.CrossRefGoogle ScholarPubMed
Smith, T.G. Jr, Lange, G.D. & Marks, W.B. (1996). Fractal methods and results in cellular morphology—dimensions, lacunarity and multifractals. J Neurosci Methods 69(2), 123136.CrossRefGoogle ScholarPubMed
Tuceryan, M. & Jain, A.K. (1998). Texture analysis. In The Handbook of Pattern Recognition and Computer Vision Chen, C.H. & Pau, L.F. (Eds.), pp. 207248. Singapore: World Scientific Publishing Co. Pte. Ltd.Google Scholar
Updike, S.X. & Nowzari, H. (2008). Fractal analysis of dental radiographs to detect periodontitis-induced trabecular changes. J Periodontal Res 43(6), 658664.CrossRefGoogle ScholarPubMed
Uppal, S.O., Voronine, D.V., Wendt, E. & Heckman, C.A. (2010). Morphological fractal analysis of shape in cancer cells treated with combinations of microtubule-polymerizing and -depolymerizing agents. Microsc Microanal 16(4), 472477.CrossRefGoogle ScholarPubMed
Utrilla-Coello, R.G., Bello-Pérez, L.A., Vernon-Carter, E.J., Rodriguez, E. & Alvarez-Ramirez, J. (2013). Microstructure of retrograded starch: Quantification from lacunarity analysis of SEM micrographs. J Food Eng 116(4), 775781.CrossRefGoogle Scholar
Wang, H., Zhou, H., Gestos, A., Fang, J. & Lin, T. (2013). Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages. ACS Appl Mater Interfaces 5(20), 1022110226.CrossRefGoogle ScholarPubMed
Workman, M.J., Serov, A., Halevi, B., Atanassov, P. & Artyushkova, K. (2015). Application of the discrete wavelet transform to SEM and AFM micrographs for quantitative analysis of complex surfaces. Langmuir 31(17), 49244933.CrossRefGoogle ScholarPubMed
Yaşar, F. & Akgünlü, F. (2005). Fractal dimension and lacunarity analysis of dental radiographs. Dentomaxillofac Radiol 34(5), 261267.CrossRefGoogle ScholarPubMed
Zhang, J., Huang, W. & Han, Y. (2006). Wettability of zinc oxide surfaces with controllable structures. Langmuir 22(7), 29462950.CrossRefGoogle ScholarPubMed
Zhang, M., Shao, C., Guo, Z., Zhang, Z., Mu, J., Zhang, P., Cao, T. & Liu, Y. (2011). Highly efficient decomposition of organic dye by aqueous-solid phase transfer and in situ photocatalysis using hierarchical copper phthalocyanine hollow spheres. ACS Appl Mater Interfaces 3(7), 25732578.CrossRefGoogle ScholarPubMed
Zhu, T., Li, J. & Wu, Q. (2011). Construction of TiO2 hierarchical nanostructures from nanocrystals and their photocatalytic properties. ACS Appl Mater Interfaces 3(9), 34483453.CrossRefGoogle ScholarPubMed
Zou, M., Beckford, S., Wei, R., Ellis, C., Hatton, G. & Miller, M.A. (2011). Effects of surface roughness and energy on ice adhesion strength. Appl Surf Sci 257, 37863792.CrossRefGoogle Scholar
Supplementary material: Image

Ling supplementary material

Figure S1

Download Ling supplementary material(Image)
Image 45.3 MB