Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-15T13:42:47.821Z Has data issue: false hasContentIssue false

Focused X-Ray Histological Analyses to Reveal Asbestos Fibers and Bodies in Lungs and Pleura of Asbestos-Exposed Subjects

Published online by Cambridge University Press:  13 September 2016

Lorella Pascolo*
Affiliation:
Department of Medical, Surgical, and Health Sciences, University of Trieste, 34149 Trieste, Italy
Alessandra Gianoncelli
Affiliation:
Elettra—Sincrotrone Trieste, Basovizza, 34149 Trieste, Italy
Clara Rizzardi
Affiliation:
Department of Medical, Surgical, and Health Sciences, University of Trieste, 34149 Trieste, Italy
Martin de Jonge
Affiliation:
Australian Synchrotron, 3168 Clayton, Melbourne, VIC, Australia
Daryl Howard
Affiliation:
Australian Synchrotron, 3168 Clayton, Melbourne, VIC, Australia
David Paterson
Affiliation:
Australian Synchrotron, 3168 Clayton, Melbourne, VIC, Australia
Francesca Cammisuli
Affiliation:
Department of Medical, Surgical, and Health Sciences, University of Trieste, 34149 Trieste, Italy
Murielle Salomé
Affiliation:
European Synchrotron Radiation Facility, 38000 Grenoble, Cedex 9, France
Paolo De Paoli
Affiliation:
Scientific Direction, Centro di Riferimento Oncologico (CRO), National Cancer Institute, IRCCS, 33081 Aviano (PN), Italy
Mauro Melato
Affiliation:
Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy
Vincenzo Canzonieri
Affiliation:
Division of Pathology, Centro di Riferimento Oncologico (CRO), National Cancer Institute, IRCCS, 33081 Aviano (PN), Italy
*
*Corresponding author.[email protected]
Get access

Abstract

Asbestos bodies are the histological hallmarks of asbestos exposure. Both conventional and advanced techniques are used to evaluate abundance and composition in histological samples. We previously reported the possibility of using synchrotron X-ray fluorescence microscopy (XFM) for analyzing the chemical composition of asbestos bodies directly in lung tissue samples. Here we applied a high-performance synchrotron X-ray fluorescence (XRF) set-up that could allow new protocols for fast monitoring of the occurrence of asbestos bodies in large histological sections, improving investigation of the related chemical changes. A combination of synchrotron X-ray transmission and fluorescence microscopy techniques at different energies at three distinct synchrotrons was used to characterize asbestos in paraffinated lung tissues. The fast chemical imaging of the XFM beamline (Australian Synchrotron) demonstrates that asbestos bodies can be rapidly and efficiently identified as co-localization of high calcium and iron, the most abundant elements of these formations inside tissues (Fe up to 10% w/w; Ca up to 1%). By following iron presence, we were also able to hint at small asbestos fibers in pleural spaces. XRF at lower energy and at higher spatial resolution was afterwards performed to better define small fibers. These analyses may predispose for future protocols to be set with laboratory instruments.

Type
Biological Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bohic, S., Cotte, M., Salomé, M., Fayard, B., Kuehbacher, M., Cloetens, P., Martinez-Criado, G., Tucoulou, R. & Susini, J. (2012). Biomedical applications of the ESRF synchrotron-based microspectroscopy platform. J Struct Biol 177, 248258.Google Scholar
Boutin, C., Dumortier, P., Rey, F., Viallat, J.R. & De Vuyst, P. (1996). Black spots concentrate oncogenic asbestos fibers in the parietal pleura. Thoracoscopic and mineralogic study. Am J Respir Crit Care Med 153, 444449.Google Scholar
Brims, F.J.H. (2009). Asbestos—a legacy and a persistent problem. J R Nav Med Serv 95, 411.CrossRefGoogle Scholar
Churg, A. (1982). Fiber counting and analysis in the diagnosis of asbestos-related disease. Hum Pathol 13, 381392.CrossRefGoogle ScholarPubMed
de Vuyst, P., Jedwab, J., Robience, Y. & Yernault, J.C. (1982). “Oxalate bodies”, another reaction of the human lung to asbestos inhalation? Eur J Respir Dis 63, 543549.Google ScholarPubMed
De Vuyst, P., Karjalainen, A., Dumortier, P., Pairon, J.C., Monsó, E., Brochard, P., Teschler, H., Tossavainen, A. & Gibbs, A. (1998). Guidelines for mineral fibre analyses in biological samples: Report of the ERS Working Group. European Respiratory Society. Eur Respir J 11, 14161426.Google Scholar
Dumortier, P., Rey, F., Viallat, J., Broucke, I., Boutin, C. & De Vuyst, P. (2002). Chrysotile and tremolite asbestos fibres in the lungs and parietal pleura of Corsican goats. Occup Environ Med 59, 643646.CrossRefGoogle ScholarPubMed
Gaensler, E.A. & Addington, W.W. (1969). Asbestos or ferruginous bodies. N Engl J Med 280, 488492.Google Scholar
Ghio, A.J., Churg, A. & Roggli, V.L. (2004). Review: Ferruginous bodies: Implications in the mechanism of fiber and particle toxicity. Toxicol Pathol 32, 643649.Google Scholar
Ghio, A.J., Stonehuerner, J., Richards, J. & Devlin, R.B. (2008). Iron homeostasis in the lung following asbestos exposure. Antioxid Redox Signal 10, 371377.CrossRefGoogle ScholarPubMed
Gianoncelli, A., Kaulich, B., Alberti, R., Klatka, T., Longoni, A., De Marco, A., Marcello, A. & Kiskinova, M. (2009). Simultaneous soft X-ray transmission and emission microscopy. Nucl Instrum Met A 608, 195198.Google Scholar
Gianoncelli, A., Kourousias, G., Stolfa, A. & Kaulich, B. (2013). Recent developments at the TwinMic beamline at ELETTRA: An 8 SDD detector setup for low energy X-ray fluorescence. J Phys Conf 425, 182001.CrossRefGoogle Scholar
Gianoncelli, A., Morrison, G.R., Kaulich, B., Bacescu, D. & Kovac, J. (2006). Scanning transmission X-ray microscopy with a configurable detector. Appl Phys Lett 89, 251117.CrossRefGoogle Scholar
Gianoncelli, A., Vaccari, L., Kourousias, G., Cassese, D., Bedolla, D.E., Kenig, S., Storici, P., Lazzarino, M. & Kiskinova, M. (2015). Soft X-ray microscopy radiation damage on fixed cells investigated with synchrotron radiation FTIR microscopy. Sci Rep 5, 10250.CrossRefGoogle ScholarPubMed
Kaulich, B., Bacescu, D., Susini, J., David, C., Di Fabrizio, E., Morrison, G.R., Charalambous, P., Thieme, J., Wilhein, T., Kovac, J., Cocco, D., Salomé, M., Dhez, O., Weitkamp, T., Cabrini, S., Cojoc, D., Gianoncelli, A., Vogt, U., Podnar, M., Zangrando, M., Zacchigna, M. & Kiskinova, M. (2006). A European twin X-ray microscopy station commissioned at ELETTRA. Proc 8th Int Conf X-ray Microscopy 7, 2225.Google Scholar
Kaulich, B., Thibault, P., Gianoncelli, A. & Kiskinova, M. (2011). Transmission and emission X-ray microscopy: Operation modes, contrast mechanisms and applications. J Phys Condens Matter 23, 083002.Google Scholar
Koerten, H.K., Hazekamp, J., Kroon, M. & Daems, W.T. (1990). Asbestos body formation and iron accumulation in mouse peritoneal granulomas after the introduction of crocidolite asbestos fibers. Am J Pathol 136, 141157.Google Scholar
Kohyama, N. & Suzuki, Y. (1991). Analysis of asbestos fibers in lung parenchyma, pleural plaques, and mesothelioma tissues of North American insulation workers. Ann N Y Acad Sci. 643, 2752.Google Scholar
Kourousias, G., Pascolo, L., Marmorato, P., Ponti, J., Ceccone, G., Kiskinova, M. & Gianoncelli, A. (2015). High-resolution scanning transmission soft X-ray microscopy for rapid probing of nanoparticle distribution and sufferance features in exposed cells. X-Ray Spectrom 44, 163168.Google Scholar
Le Naour, F., Sandt, C., Peng, C., Trcera, N., Chiappini, F., Flank, A.-M., Guettier, C. & Dumas, P. (2012). In situ chemical composition analysis of cirrhosis by combining synchrotron fourier transform infrared and synchrotron X-ray fluorescence microspectroscopies on the same tissue section. Anal Chem 84, 1026010266.CrossRefGoogle ScholarPubMed
Outten, C.E. & O’Halloran, T.V. (2001). Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292, 24882492.CrossRefGoogle ScholarPubMed
Pascolo, L., Borelli, V., Canzonieri, V., Gianoncelli, A., Birarda, G., Bedolla, D.E., Salomé, M., Vaccari, L., Calligaro, C., Cotte, M., Hesse, B., Luisi, F., Zabucchi, G., Melato, M. & Rizzardi, C. (2015). Differential protein folding and chemical changes in lung tissues exposed to asbestos or particulates. Sci Rep 5, 12129.CrossRefGoogle ScholarPubMed
Pascolo, L., Gianoncelli, A., Kaulich, B., Rizzardi, C., Schneider, M., Bottin, C., Polentarutti, M., Kiskinova, M., Longoni, A. & Melato, M. (2011). Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues. Part Fibre Toxicol 8, 7.CrossRefGoogle ScholarPubMed
Pascolo, L., Gianoncelli, A., Rizzardi, C., Tisato, V., Salomé, M., Calligaro, C., Salvi, F., Paterson, D. & Zamboni, P. (2014). Calcium micro-depositions in jugular truncular venous malformations revealed by synchrotron-based XRF imaging. Sci Rep 4, article number 6540. Available at http://www.nature.com/srep/2014/141007/srep06540/full/srep06540.html (Retrieved October 23, 2014).Google Scholar
Pascolo, L., Gianoncelli, A., Schneider, G., Salomé, M., Schneider, M., Calligaro, C., Kiskinova, M., Melato, M. & Rizzardi, C. (2013). The interaction of asbestos and iron in lung tissue revealed by synchrotron-based scanning X-ray microscopy. Sci Rep 3, article number 1123. Available at http://www.nature.com/srep/2013/130124/srep01123/full/srep01123.html (Retrieved October 23, 2014).Google Scholar
Paterson, D., de Jonge, M.D., Howard, D.L., Lewis, W., McKinlay, J., Starritt, A., Kusel, M., Ryan, C.G., Kirkham, R., Moorhead, G., Siddons, D.P., McNulty, I., Eyberger, C. & Lai, B. (2011). The X-ray fluorescence microscopy beamline at the Australian synchrotron. AIP Conf Proc. pp. 219–222. Available at http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.3625343 (Retrieved May 29, 2015).Google Scholar
Paunesku, T., Vogt, S., Irving, T.C., Lai, B., Barrea, R.A., Maser, J. & Woloschak, G.E. (2009). Biological applications of X-ray microprobes. Int J Radiat Biol 85, 710713.CrossRefGoogle ScholarPubMed
Paunesku, T., Vogt, S., Maser, J., Lai, B. & Woloschak, G. (2006). X-ray fluorescence microprobe imaging in biology and medicine. J Cell Biochem 99, 14891502.CrossRefGoogle ScholarPubMed
Ralle, M., Huster, D., Vogt, S., Schirrmeister, W., Burkhead, J.L., Capps, T.R., Gray, L., Lai, B., Maryon, E. & Lutsenko, S. (2010). Wilson disease at a single cell level: Intracellular copper trafficking activates compartment-specific responses in hepatocytes. J Biol Chem 285, 3087530883.CrossRefGoogle Scholar
Roberts, F., Mackinnon, J.L., Cherrie, L., Burnett, R.A. & Harper, C.M. (2004). Interobserver variability in analysis of asbestos fibres and asbestos bodies in human lung tissue. Med, Sci Law 44, 151159.Google Scholar
Roggli, V.L. (1990). Human disease consequences of fiber exposures: A review of human lung pathology and fiber burden data. Environ Health Perspect 88, 295303.Google Scholar
Roggli, V.L. & Pratt, P.C. (1983). Numbers of asbestos bodies on iron-stained tissue sections in relation to asbestos body counts in lung tissue digests. Hum Pathol 14, 355361.CrossRefGoogle ScholarPubMed
Ryan, C.G., Cousens, D.R., Sie, S.H., Griffin, W.L., Suter, G.F. & Clayton, E. (1990). Quantitative pixe microanalysis of geological matemal using the CSIRO proton microprobe. Nucl Instrum Methods Phys Res B 47, 5571.Google Scholar
Ryan, C.G., Kirkham, R., Hough, R.M., Moorhead, G., Siddons, D.P., de Jonge, M.D., Paterson, D.J., De Geronimo, G., Howard, D.L. & Cleverley, J.S. (2010a). Elemental X-ray imaging using the Maia detector array: The benefits and challenges of large solid-angle. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 619, 3743.CrossRefGoogle Scholar
Ryan, C.G., Siddons, D.P., Kirkham, R., Dunn, P.A., Kuczewski, A., Moorhead, G., De Geronimo, G., Paterson, D.J., de Jonge, M.D., Hough, R.M., Lintern, M.J., Howard, D.L., Kappen, P., Cleverley, J., Denecke, M. & Walker, C.T. (2010b). The New Maia Detector System: methods for high definition trace element imaging of natural material. AIP Conference Proceedings, pp. 9–17. Available at http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.3399266 (retrieved April 6, 2010).Google Scholar
Sole, A., Papillon, E., Cotte, M., Walter, P. & Susini, J. (2007). A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochimica Acta Part B 62, 6368.Google Scholar
Straif, K., Benbrahim-Tallaa, L., Baan, R., Grosse, Y., Secretan, B., El Ghissassi, F., Bouvard, V., Guha, N., Freeman, C., Galichet, L. & Cogliano, V., WHO International Agency for Research on Cancer Monograph Working Group (2009). A review of human carcinogens—Part C: Metals, arsenic, dusts, and fibres. Lancet Oncol 10, 453454.Google Scholar
Suzuki, Y. & Yuen, S.R. (2002). Asbestos fibers contributing to the induction of human malignant mesothelioma. Ann N Y Acad Sci 982, 160176.Google Scholar
Szlachetko, J., Cotte, M., Morse, J., Salomé, M., Jagodzinski, P., Dousse, J.-C., Hoszowska, J., Kayser, Y. & Susini, J. (2010). Wavelength-dispersive spectrometer for X-ray microfluorescence analysis at the X-ray microscopy beamline ID21 (ESRF). J Synchrotron Radiat 17, 400408.CrossRefGoogle ScholarPubMed
Tainer, J.A., Roberts, V.A. & Getzoff, E.D. (1991). Metal-binding sites in proteins. Curr Opin Biotechnol 2, 582591.CrossRefGoogle ScholarPubMed
Tossavainen, A. (1997). Asbestos, asbestosis, and cancer: The Helsinki criteria for diagnosis and attribution. Scand J Work Environ Health 23, 311316.Google Scholar
Wegrzynek, D., Markowicz, A., Bamford, S., Chinea-Cano, E. & Bogovac, M. (2005). Micro-beam X-ray fluorescence and absorption imaging techniques at the IAEA laboratories. Nucl Instrum Methods Phys Res B 231, 176182.Google Scholar
Wolff, H., Vehmas, T., Oksa, P., Rantanen, J. & Vainio, H. (2015). Asbestos, asbestosis, and cancer, the Helsinki criteria for diagnosis and attribution 2014: Recommendations. Scand J Work Environ Health 41, 515.CrossRefGoogle Scholar
Supplementary material: Image

Pascolo supplementary material

Figure S1

Download Pascolo supplementary material(Image)
Image 134.6 KB