Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T02:50:56.676Z Has data issue: false hasContentIssue false

First Application of a Spherical-Aberration Corrected Microscope Material Science

Published online by Cambridge University Press:  02 July 2020

B. Kabius
Affiliation:
Institut für Festkörperphysik, Forschungszentrum Jülich, D-52425, Jiilich, FRG
K. Urban
Affiliation:
Institut für Festkörperphysik, Forschungszentrum Jülich, D-52425, Jiilich, FRG
M. Haider
Affiliation:
CEOS GmbH, Im Neuenheimer Feld 519, D-69120, Heidelberg, FRG
S. Uhlemann
Affiliation:
CEOS GmbH, Im Neuenheimer Feld 519, D-69120, Heidelberg, FRG
E. Schwan
Affiliation:
CEOS GmbH, Im Neuenheimer Feld 519, D-69120, Heidelberg, FRG
H. Rose
Affiliation:
Institut für Angewandte Physik, Hochschulstr. 6, D-64289, Darmstadt, FRG
Get access

Extract

One of the most challenging tasks for high-resolution electron microscopy (HREM) is the atomistic investigation of defects and interfaces in thin films of semiconductors and ceramics. In particular, the application of these materials in electronic devices requires the understanding of the atomistic structure responsible for electronic and optical properties. The imaging of these structures requires a point resolution down to 0.1 nm. For example the smallest atomic spacing of GaAs in the (110) projection is 0.14 nm. According to Scherzer the point resolution of the TEM is proportional to spherical-aberration coefficient Cs1/4 and to the wave length λ3/4. Commercial medium-voltage microscopes up to 400 kV offer only a point resolution of 0.16 nm due to the high spherical-aberration constant Cs of the electromagnetic objective lens. Decreasing the wave length λ by increasing the electron energy improves the point resolution, but has the drawback of severe radiation damage and high costs.

Type
Advances in Instrumentation and Performance
Copyright
Copyright © Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Scherzer, O., J. Appl. Phys. 20 (1949) 20.CrossRefGoogle Scholar
2.Rose, H., Optik 85, (1990) 1924.Google Scholar
3.Haider, M., Rose, H., Uhlemann, S., Schwan, E.., Kabius, B., Urban, K., Nature (1998) in press.Google Scholar