Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T14:04:19.849Z Has data issue: false hasContentIssue false

Field-Dependent Measurement of GaAs Composition by Atom Probe Tomography

Published online by Cambridge University Press:  10 November 2017

Enrico Di Russo
Affiliation:
UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
Ivan Blum
Affiliation:
UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
Jonathan Houard
Affiliation:
UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
Gérald Da Costa
Affiliation:
UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
Didier Blavette
Affiliation:
UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
Lorenzo Rigutti*
Affiliation:
UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Normandie Université, 76000 Rouen, France
*
*Corresponding author. [email protected]
Get access

Abstract

The composition of GaAs measured by laser-assisted atom probe tomography may be inaccurate depending on the experimental conditions. In this work, we assess the role of the DC field and the impinging laser energy on such compositional bias. The DC field is found to have a major influence, while the laser energy has a weaker one within the range of parameters explored. The atomic fraction of Ga may vary from 0.55 at low-field conditions to 0.35 at high field. These results have been interpreted in terms of preferential evaporation of Ga at high field. The deficit of As is most likely explained by the formation of neutral As complexes either by direct ejection from the tip surface or upon the dissociation of large clusters. The study of multiple detection events supports this interpretation.

Type
Materials Science Applications
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, R., Bernal, R.A., Isheim, D. & Espinosa, H.D. (2011). Characterizing atomic composition and dopant distribution in wide band gap semiconductor nanowires using laser-assisted atom probe tomography. J Phys Chem C 115, 1768817694.CrossRefGoogle Scholar
Amirifar, N., Lardé, R., Talbot, E., Pareige, P., Rigutti, L., Mancini, L., Houard, J., Castro, C., Sallet, V., Zehani, E., Hassani, S., Sartel, C., Ziani, A. & Portier, X. (2015). Quantitative analysis of doped/undoped ZnO nanomaterials using laser assisted atom probe tomography: Influence of the analysis parameters. J Appl Phys 118, 215703.CrossRefGoogle Scholar
Biegelsen, D.K., Bringans, R.D., Northrup, J.E. & Swartz, L.-E. (1990). Surface reconstructions of GaAs(100) observed by scanning tunneling microscopy. Phys Rev B 41, 57015706.CrossRefGoogle ScholarPubMed
Blum, I., Cuvilly, F. & Lefebvre-Ulrikson, W. (2016). Atom probe sample preparation. In Atom Probe Tomography, Lefebvre, W., Vurpillot, F., & Sauvage, X. (Ed.), pp. 97–121. Oxford, UK: Academic Press.CrossRefGoogle Scholar
Blum, I., Rigutti, L., Vurpillot, F., Vella, A., Gaillard, A. & Deconihout, B. (2016). Dissociation dynamics of molecular ions in high DC electric field. J Phys Chem A 120, 36543662.CrossRefGoogle ScholarPubMed
Cerezo, A., Grovenor, C.R.M. & Smith, G.D.W. (1986). Pulsed laser atom probe analysis of semiconductor materials. J Microsc 141, 155170.CrossRefGoogle Scholar
Da Costa, G., Vurpillot, F., Bostel, A., Bouet, M. & Deconihout, B. (2005). Design of a delay-line position-sensitive detector with improved performance. Rev Sci Instrum 76, 013304.CrossRefGoogle Scholar
Da Costa, G.D., Wang, H., Duguay, S., Bostel, A., Blavette, D. & Deconihout, B. (2012). Advance in multi-hit detection and quantization in atom probe tomography. Rev Sci Instrum 83, 123709.CrossRefGoogle ScholarPubMed
De Geuser, F., Gault, B., Bostel, A. & Vurpillot, F. (2007). Correlated field evaporation as seen by atom probe tomography. Surf Sci 601, 536543.CrossRefGoogle Scholar
Diercks, D.R. (2013). Atom probe tomography evaporation behavior of C-axis GaN nanowires: Crystallographic, stoichiometric, and detection efficiency aspects. J Appl Phys 114, 184903.CrossRefGoogle Scholar
Di Russo, E., Mancini, L., Moyon, F., Moldovan, S., Houard, J., Julien, F.H., Tchernycheva, M., Chauveau, J.M., Hugues, M., Da Costa, G., Blum, I., Lefebvre, W., Blavette, D. & Rigutti, L. (2017). Three-dimensional atomic-scale investigation of ZnO-MgxZn1-xO m-plane heterostructures. Appl Phys Lett 111, 032108.CrossRefGoogle Scholar
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012). Atom Probe Microscopy. New York, NY: Springer Science & Business Media.CrossRefGoogle Scholar
Gault, B., Saxey, D.W., Ashton, M.W., Sinnott, S.B., Chiaramonti, A.N., Moody, M.P. & Schreiber, D.K. (2016). Behavior of molecules and molecular ions near a field emitter. New J Phys 18, 033031.CrossRefGoogle Scholar
Gault, B., Vurpillot, F., Vella, A., Gilbert, M., Menand, A., Blavette, D. & Deconihout, B. (2006). Design of a femtosecond laser assisted tomographic atom probe. Rev Sci Instrum 77, 043705.CrossRefGoogle Scholar
Gorman, B.P., Norman, A.G., Lawrence, D., Prosa, T., Guthrey, H. & Al-Jassim, M. (2011). Atomic scale characterization of compound semiconductors using atom probe tomography. In 2011 37th IEEE Photovoltaic Specialists Conference. IEEE: pp. 003357–003359.Google Scholar
Grieb, T., Müller, K., Cadel, E., Beyer, A., Schowalter, M., Talbot, E., Volz, K. & Rosenauer, A. (2014). Simultaneous quantification of indium and nitrogen concentration in InGaNAs using HAADF-STEM. Microsc Microanal 20, 17401752.CrossRefGoogle ScholarPubMed
Kingham, D.R. (1982). The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states. Surf Sci 116, 273301.CrossRefGoogle Scholar
Mancini, L., Amirifar, N., Shinde, D., Blum, I., Gilbert, M., Vella, A., Vurpillot, F., Lefebvre, W., Lardé, R., Talbot, E., Pareige, P., Portier, X., Ziani, A., Davesnne, C., Durand, C., Eymery, J., Butté, R., Carlin, J.-F., Grandjean, N. & Rigutti, L. (2014). Composition of wide bandgap semiconductor materials and nanostructures measured by atom probe tomography and its dependence on the surface electric field. J Phys Chem C 118, 2413624151.CrossRefGoogle Scholar
Müller, M., Saxey, D.W., Smith, G.D.W. & Gault, B. (2011). Some aspects of the field evaporation behaviour of GaSb. Ultramicroscopy 111, 487492.CrossRefGoogle ScholarPubMed
Neave, J.H., Dobson, P.J., Joyce, B.A. & Zhang, J. (1985). Reflection high-energy electron diffraction oscillations from vicinal surfaces—A new approach to surface diffusion measurements. Appl Phys Lett 47, 100102.CrossRefGoogle Scholar
Nishikawa, O., Kawada, H., Nagai, Y. & Nomura, E. (1984). Erroneous composition of GaAs mass-analyzed by atom-probes. J Phys Colloq 45, C9-465C9-470.CrossRefGoogle Scholar
Padalkar, S., Riley, J.R., Li, Q., Wang, G.T. & Lauhon, L.J. (2014). Lift-out procedures for atom probe tomography targeting nanoscale features in core-shell nanowire heterostructures. Phys Stat Sol (c) 11, 656661.CrossRefGoogle Scholar
Rigutti, L., Mancini, L., Hernández-Maldonado, D., Lefebvre, W., Giraud, E., Butté, R., Carlin, J.F., Grandjean, N., Blavette, D. & Vurpillot, F. (2016). Statistical correction of atom probe tomography data of semiconductor alloys combined with optical spectroscopy: The case of Al0.25Ga0.75N. J Appl Phys 119, 105704.CrossRefGoogle Scholar
Saxey, D.W. (2011). Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy 111, 473479.CrossRefGoogle ScholarPubMed
Tsong, T.T. (1978). Field ion image formation. Surf Sci 70, 211233.CrossRefGoogle Scholar
Vella, A. (2013). On the interaction of an ultra-fast laser with a nanometric tip by laser assisted atom probe tomography: A review. Ultramicroscopy 132, 518.CrossRefGoogle ScholarPubMed
Zanuttini, D., Blum, I., Rigutti, L., Vurpillot, F., Douady, J., Jacquet, E., Anglade, P.-M. & Gervais, B. (2017). Field-induced dissociation of molecular ions: Neutral emission leads to composition biases in atom probe. Phys Rev A 95, 061401(R).CrossRefGoogle Scholar
Supplementary material: File

Di Russo et al supplementary material

Di Russo et al supplementary material 1

Download Di Russo et al supplementary material(File)
File 2.8 MB