Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T02:46:41.309Z Has data issue: false hasContentIssue false

Field Ion Emission in an Atom Probe Microscope Triggered by Femtosecond-Pulsed Coherent Extreme Ultraviolet Light

Published online by Cambridge University Press:  12 March 2020

Ann N. Chiaramonti*
Affiliation:
Material Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO80305, USA
Luis Miaja-Avila
Affiliation:
Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO80305, USA
Benjamin W. Caplins
Affiliation:
Material Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO80305, USA
Paul T. Blanchard
Affiliation:
Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO80305, USA
David R. Diercks
Affiliation:
Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO80401, USA
Brian P. Gorman
Affiliation:
Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO80401, USA
Norman A. Sanford
Affiliation:
Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO80305, USA
*
*Author for correspondence: Ann N. Chiaramonti, E-mail: [email protected]
Get access

Abstract

This paper describes initial experimental results from an extreme ultraviolet (EUV) radiation-pulsed atom probe microscope. Femtosecond-pulsed coherent EUV radiation of 29.6 nm wavelength (41.85 eV photon energy), obtained through high harmonic generation in an Ar-filled hollow capillary waveguide, successfully triggered controlled field ion emission from the apex of amorphous SiO2 specimens. The calculated composition is stoichiometric within the error of the measurement and effectively invariant of the specimen base temperature in the range of 25 K to 150 K. Photon energies available in the EUV band are significantly higher than those currently used in the state-of-the-art near-ultraviolet laser-pulsed atom probe, which enables the possibility of additional ionization and desorption pathways. Pulsed coherent EUV light is a new and potential alternative to near-ultraviolet radiation for atom probe tomography.

Type
Software and Instrumentation
Copyright
Copyright © Microscopy Society of America 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper is a partial contribution of the U.S. Government and is not subject to copyright in the United States.

References

Antoniewicz, PR (1980). Model for electron- and photon-stimulated desorption. Phys Rev B 21, 38113815.CrossRefGoogle Scholar
Arnoldi, L, Silaeva, EP, Gaillard, A, Vurpillot, F, Blum, I, Rigutti, L, Deconihout, B & Vella, A (2014). Energy deficit of pulsed-laser field-ionized and field-emitted ions from non-metallic nano-tips. J Appl Phys 115, 203705.CrossRefGoogle Scholar
Bachhav, M, Danoix, F, Hannoyer, B, Bassat, JM & Danoix, R (2013). Investigation of O-18 enriched hematite (α-Fe2O3) by laser assisted atom probe tomography. Int J Mass Spectrom 335, 5760.CrossRefGoogle Scholar
Berthold, JW, Jacobs, SF & Norton, MA (1977). Dimensional stability of fused silica, invar, and several ultra-low thermal expansion materials. Metrologia 13, 916.CrossRefGoogle Scholar
Blanchard, P, Chiaramonti, AN, Sanford, NA & Barili, S (2018). An open-source, graphical software package for computer-assisted species assignment in atom probe to- mography compositional analysis. In APT&M 2018 Atom Probe Tomography and Microscopy, International Field Emission Society (Ed.), p. 316. Gaithersburg, MD: NIST.Google Scholar
Blum, I, Zanuttini, D, Rigutti, L, Vurpillot, F, Douady, J, Jacquet, E, Anglade, P-M, Gervais, B, Vella, A & Gaillard, A (2016). Dissociation of molecular ions during the DC field evaporation ZnO in atom probe tomography. Microsc Microanal 22, 662663.CrossRefGoogle Scholar
Bunton, J, Olson, J, Lenz, D, Larson, D & Kelly, T (2010). Optimized laser thermal pulsing of atom probe tomography: LEAP 4000X™. Microsc Microanal 16, 1011.CrossRefGoogle Scholar
Bunton, JH, Olson, JD, Lenz, DR & Kelly, TF (2007). Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance. Microsc Microanal 13, 418427.CrossRefGoogle ScholarPubMed
Carini, G, Carini, G, Cosio, D, D'Angelo, G & Rossi, F (2016). Low temperature heat capacity of permanently densified SiO2 glasses. Philos Mag 96, 761773.CrossRefGoogle Scholar
Cerezo, A, Smith, GDW & Clifton, PH (2006). Measurement of temperature rises in the femtosecond laser pulsed three-dimensional atom probe. Appl Phys Lett 88, 154103.CrossRefGoogle Scholar
Cerezo, A, Smith, GDW & Waugh, AR (1984). The FIM100—Performance of a commercial atom probe system. J Phys Colloq 45, C9-329C9-335.CrossRefGoogle Scholar
Chen, YM, Ohkubo, T & Hono, K (2011). Laser assisted field evaporation of oxides in atom probe analysis. Ultramicroscopy 111, 562566.CrossRefGoogle ScholarPubMed
Chiaramonti, AN, Miaja-Avila, L, Blanchard, PT, Diercks, DR, Gorman, BP & Sanford, NA (2019). A three-dimensional atom probe microscope incorporating a wavelength-tuneable femtosecond-pulsed coherent extreme ultraviolet light source. MRS Adv 4, 23672375.CrossRefGoogle Scholar
Deconihout, B, Vurpillot, F, Gault, B, Da Costa, G, Bouet, M & Bostel, A (2004). Toward a LaWaTAP: Laser assisted wide angle tomographic atom probe. In 49th International Field Emission Symposium, pp. 278–282. Seggau Castle, Austria: John Wiley & Sons, Ltd.Google Scholar
Deconihout, B, Vurpillot, F, Gault, B, Da Costa, G, Bouet, M, Bostel, A, Blavette, D, Hideur, A, Martel, G & Brunel, M (2007). Toward a laser assisted wide-angle tomographic atom-probe. Surf Interface Anal 39, 278282.CrossRefGoogle Scholar
Diercks, DR & Gorman, BP (2016). Experimental evaluation of the interrelationships between laser energy, temperature, applied bias, and measured composition in laser pulsed atom probe tomography. Microsc Microanal 22, 648649.CrossRefGoogle Scholar
Drachsel, W, Jaenicke, S, Ciszewski, A, Dosselmann, J & Block, J (1987). Photon stimulated field desorption of hydrogen from rhodium. J Phys Colloq 48, C6-227.CrossRefGoogle Scholar
Drachsel, W, Nishigaki, S & Block, JH (1980). Photon-induced field ionization mass spectroscopy. Int J Mass Spectrom Ion Phys 32, 333343.CrossRefGoogle Scholar
Drachsel, W, Weigmann, W, Jaenicke, S & Block, JH (1985). Photon-induced field desorption experiments with laser and synchrotron radiation. In Desorption Induced by Electronic Transitions DIETII: Proceedings of the Second International Workshop, Schlob Elmau, Bavaria, October 15–17, 1984, Brenig W & Menzel D (Eds.), p. 245. Berlin: Springer-Verlag.Google Scholar
Duguay, S, Ngamo, M, Fazzini, PF, Cristiano, F, Daoud, K & Pareige, P (2010). Atomic scale study of a MOS structure with an ultra-low energy boron-implanted silicon substrate. Thin Solid Films 518, 23982401.CrossRefGoogle Scholar
Eernisse, EP (1974). Compaction of ion-implanted fused silica. J Appl Phys 45, 167.CrossRefGoogle Scholar
Ernst, N & Block, JH (1983). Temperature programmed field desorption of protonated hydrogen from rhodium and tungsten. Surf Sci 126, 397404.CrossRefGoogle Scholar
Gault, B, Chen, YM, Moody, MP, Ohkubo, T, Hono, K & Ringer, SP (2011). Influence of the wavelength on the spatial resolution of pulsed-laser atom probe. J Appl Phys 110, 094901.CrossRefGoogle Scholar
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012). Atom Probe Microscopy. New York, NY: Springer.CrossRefGoogle Scholar
Gault, B, Saxey, DW, Ashton, MW, Sinnott, SB, Chiaramonti, AN, Moody, MP & Schreiber, DK (2016). Behavior of molecules and molecular ions near a field emitter. New J Phys 18, 033031.CrossRefGoogle Scholar
Gault, B, Vurpillot, F, Vella, A, Gilbert, M, Menand, A, Blavette, D & Deconihout, B (2006). Design of a femtosecond laser assisted tomographic atom probe. Rev Sci Instrum 77, 043705.CrossRefGoogle Scholar
Gil, L, Ramos, MA, Bringer, A & Buchenau, U (1993). Low-temperature specific heat and thermal conductivity of glasses. Phys Rev Lett 70, 182185.CrossRefGoogle ScholarPubMed
Gilbert, M, Vandervorst, W, Koelling, S & Kambham, AK (2011). Atom probe analysis of a 3D finFET with high-k metal gate. Ultramicroscopy 111, 530534.CrossRefGoogle ScholarPubMed
Gin, S, Ryan, JV, Schreiber, DK, Neeway, J & Cabié, M (2013). Contribution of atom-probe tomography to a better understanding of glass alteration mechanisms: Application to a nuclear glass specimen altered 25 years in a granitic environment. Chem Geol 349–350, 99109.CrossRefGoogle Scholar
Gomer, R (1959). Field desorption. J Chem Phys 31, 1613.CrossRefGoogle Scholar
Gruber, M, Oberdorfer, C, Stender, P & Schmitz, G (2009). Laser-assisted atom probe analysis of sol–gel silica layers. Ultramicroscopy 109, 654659.CrossRefGoogle ScholarPubMed
Gullikson, EM (2009). Mass absorption coefficients. In X-Ray Data Booklet, Thompson, AC (Ed.), pp. 1-381-43. Berkeley: Center for X-Ray Optics, Advanced Light Source, Lawrence Berkeley National Laboratory.Google Scholar
Heinbuch, S, Dong, F, Rocca, JJ & Bernstein, ER (2008). Gas-phase study of the reactivity of optical coating materials with hydrocarbons by use of a desktop-size extreme-ultraviolet laser. J Opt Soc Am B 25, B85.CrossRefGoogle Scholar
Hono, K, Ohkubo, T, Chen, YM, Kodzuka, M, Oh-ishi, K, Sepehri-Amin, H, Lia, F, Kinno, T, Tomiya, S & Kanitani, Y (2011). Broadening the applications of the atom probe technique by ultraviolet femtosecond laser. Ultramicroscopy 111, 576583.CrossRefGoogle ScholarPubMed
Houard, J, Vella, A, Vurpillot, F & Deconihout, B (2010). Optical near-field absorption at a metal tip far from plasmonic resonance. Phys Rev B Condens Matter Mater Phys 81, 125411.CrossRefGoogle Scholar
International Organization for Standardization (2013). Definitions of Solar Irradiance Spectral Categories (ISO Standard No. 21348). Retrieved from https://www.spacewx.com/pdf/SET_21348_2004.pdfGoogle Scholar
Jaeger, R, Stohr, J & Kendelewicz, T (1983). Ion desorption from surfaces following photon excitation of core electrons in the bulk. Phys Rev B 28, 1145.CrossRefGoogle Scholar
Jaenicke, S, Ciszewski, A, Dosselmann, J, Drachsel, W, Block, J & Menzel, D (1988 a). Field-induced structural changes in adsorbed layers of polar molecules studied by photon-stimulated desorption. J Phys Colloq 49, C6-191.CrossRefGoogle Scholar
Jaenicke, S, Ciszewski, A, Dosselmann, J, Drachsel, W, Block, JH & Menzel, D (1988 b). Photon-stimulated desorption in high electric fields. In Desorption Induced by Electronic Transitions DIETIII: Proceedings of the Third International Workshop, Shelter Island, New York, May 20–22, 1987, Stulen R & Knotek ML (Eds.), p. 236. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Jaenicke, S, Ciszewski, A, Drachsel, W, Weigmann, W, Tsong, T, Pitts, J, Block, J & Menzel, D (1986). Field-assisted photodesorption of ions from metal and semiconductor surfaces. J Phys Colloq 47, C7-343.CrossRefGoogle Scholar
Jaenicke, S, Weigmann, W, Pitts, JR, Drachsel, W, Block, JH & Menzel, D (1987). Field-assisted photodesorption of He, Ne, Ar, Kr, and CO ions from W. Chem Phys 115, 381389.CrossRefGoogle Scholar
Johnson, LJS, Thuvander, M, Stiller, K, Odén, M & Hultman, L (2013). Blind deconvolution of time-of-flight mass spectra from atom probe tomography. Ultramicroscopy 132, 6064.CrossRefGoogle ScholarPubMed
Kellogg, GL (1982). Field ion microscopy and pulsed laser atom-probe mass spectroscopy of insulating glasses. J Appl Phys 53, 6383.CrossRefGoogle Scholar
Kellogg, GL (1987). Pulsed-laser atom probe mass spectroscopy. J Phys E Sci Instrum 20, 125.CrossRefGoogle Scholar
Kellogg, GL & Tsong, TT (1980). Pulsed-laser atom-probe field-ion microscopy. J Appl Phys 51, 11841193.CrossRefGoogle Scholar
Kelly, TF & Miller, MK (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78, 031101.CrossRefGoogle ScholarPubMed
Kelly, TF, Vella, A, Bunton, JH, Houard, J, Silaeva, EP, Bogdanowicz, J & Vandervorst, W (2014). Laser pulsing of field evaporation in atom probe tomography. Curr Opin Solid State Mater Sci 18, 8189.CrossRefGoogle Scholar
Kinno, T, Tomita, M, Ohkubo, T, Takeno, S & Hono, K (2014). Laser-assisted atom probe tomography of 18O-enriched oxide thin film for quantitative analysis of oxygen. Appl Surf Sci 290, 194198.CrossRefGoogle Scholar
Knotek, ML & Feibelman, PJ (1978). Ion desorption by core-hole Auger decay. Phys Rev Lett 40, 964967.CrossRefGoogle Scholar
Knotek, ML, Jones, VO & Rehm, V (1979). Photon-stimulated desorption of ions. Phys Rev Lett 43, 300303.CrossRefGoogle Scholar
Kuznetsov, I, Filevich, J, Dong, F, Woolston, M, Chao, W, Anderson, EH, Bernstein, E, Crick, DC, Rocca, JJ & Menoni, CS (2015). Three-dimensional nanoscale molecular imaging by extreme ultraviolet laser ablation mass spectrometry. Nat Commun 6, 6944.CrossRefGoogle ScholarPubMed
Kwak, C-M, Seol, J-B, Kim, Y-T & Park, C-G (2017). Laser-assisted atom probe tomography of four paired poly-Si/SiO2 multiple-stacks with each thickness of 10 nm. Appl Surf Sci 396, 497503.CrossRefGoogle Scholar
Laiginhas, FA, Perez-Huerta, A, Martens, RL, Prosa, TJ & Reinhard, D (2015). Atom probe tomography analysis of bulk chemistry in mineral standards. Microsc Microanal 21, 843844.CrossRefGoogle Scholar
Larson, D, Alvis, R, Lawrence, D, Prosa, T, Ulfig, R, Reinhard, D, Clifton, P, Gerstl, S, Bunton, J, Lenz, D, Kelly, T & Stiller, K (2008). Analysis of bulk dielectrics with atom probe tomography. Microsc Microanal 14, 12541255.CrossRefGoogle Scholar
Larson, DJ, Prosa, TJ, Ulfig, RM, Geiser, BP & Kelly, TF (2013). Local Electrode Atom Probe Tomography. New York, NY: Springer.CrossRefGoogle Scholar
Lefebvre-Ulrikson, W, Vurpillot, F & Sauvage, X (2016). Atom Probe Tomography: Put Theory into Practice. London, United Kingdom: Academic Press.Google Scholar
Lichtman, D & Shapira, Y (1978). Photodesorption: A critical review. Crit Rev Solid State Mater Sci 8, 93118.CrossRefGoogle Scholar
Mancini, L, Amirifar, N, Shinde, D, Blum, I, Gilbert, M, Vella, A, Vurpillot, F, Lefebvre, W, Lardé, R, Talbot, E, Pareige, P, Portier, X, Ziani, A, Davesnne, C, Durand, C, Eymery, J, Butté, R, Carlin, JF, Grandjean, N & Rigutti, L (2014). Composition of wide bandgap semiconductor materials and nanostructures measured by atom probe tomography and its dependence on the surface electric field. J Phys Chem C 118, 2413624151.CrossRefGoogle Scholar
Marquis, EA, Yahya, NA, Larson, DJ, Miller, MK & Todd, RI (2010). Probing the improbable: Imaging C atoms in alumina. Mater Today 13, 3436.CrossRefGoogle Scholar
Mazumder, B, Vella, A, Gilbert, M, Deconihout, B & Schmitz, G (2010). Reneutralization time of surface silicon ions on a field emitter. New J Phys 12, 113029.CrossRefGoogle Scholar
Menand, A & Kingham, DR (1985). Evidence for the quantum mechanical tunneling of boron ions. J Phys C Solid State Phys 18, 4539.CrossRefGoogle Scholar
Menand, A, Martin, C & Sarrau, JM (1984). Field evaporation charge state of boron ions: A temperature effect study. J Phys Colloq 45, C9-95.CrossRefGoogle Scholar
Menzel, D (1983). Mechanisms of electronically induced desorption of ions and neutrals. In Desorption Induced by Electronic Transitions DIETI: Proceedings of the First International Workshop, Williamsburg, VA, USA, May 12–14, 1982, Tolk NH, Traum MM, Tully JC & Madey TE (Eds.), p. 53. Berlin: Springer-Verlag.Google Scholar
Menzel, D & Gomer, R (1964). Desorption from metal surfaces by low-energy Electrons. J Chem Phys 41, 33113328.CrossRefGoogle Scholar
Miaja-Avila, L, Lei, C, Aeschlimann, M, Gland, JL, Murnane, MM, Kapteyn, HC & Saathoff, G (2006). Laser-assisted photoelectric effect from surfaces. Phys Rev Lett 97, 113604.CrossRefGoogle ScholarPubMed
Miller, MK & Forbes, RG (2014). Atom-Probe Tomography. Boston, MA: Springer.CrossRefGoogle Scholar
Miller, MK, Kelly, TF, Rajan, K & Ringer, SP (2012). The future of atom probe tomography. Mater Today 15, 158165.CrossRefGoogle Scholar
Miller, MK, Russell, KF, Thompson, K, Alvis, R & Larson, DJ (2007). Review of atom probe FIB-based specimen preparation methods. Microsc Microanal 13, 428436.CrossRefGoogle ScholarPubMed
Nishigaki, S, Drachsel, W & Block, JH (1979). Photon-induced field ionization mass spectrometry of ethylene on silver. Surf Sci 87, 389409.CrossRefGoogle Scholar
Ohkubo, T, Chen, YM, Kodzuka, M, Li, F, Oh-ishi, K & Hono, K (2009). Laser-assisted atom probe analysis of bulk insulating ceramics. MRS Proc 1231, 1231-NN02-09.CrossRefGoogle Scholar
Prosa, TJ & Larson, DJ (2017). Modern focused-ion-beam-based site-specific specimen preparation for atom probe tomography. Microsc Microanal 23, 194209.CrossRefGoogle ScholarPubMed
Redhead, PA (2011). Interaction of slow electrons with chemisorbed oxygen. Can J Phys 42, 886905.CrossRefGoogle Scholar
Renaud, L, Monsallut, P, Benard, P, Saliot, P, Da Costa, G, Vurpillot, F & Deconihout, B (2006). The new laser assisted wide angle tomographic atom probe. Microsc Microanal 12, 17261727.CrossRefGoogle Scholar
Rundquist, A, Durfee, CG, Chang, Z, Herne, C, Backus, S, Murnane, MM & Kapteyn, HC (1998). Phase-matched generation of coherent soft X-rays. Science 280, 14121415.CrossRefGoogle ScholarPubMed
Santhanagopalan, D, Schreiber, DK, Perea, DE, Martens, RL, Janssen, Y, Khalifah, P & Meng, YS (2015). Effects of laser energy and wavelength on the analysis of LiFePO4 using laser assisted atom probe tomography. Ultramicroscopy 148, 5766.CrossRefGoogle Scholar
Schirhagl, R, Raatz, N, Meijer, J, Markham, M, Gerstl, SSA & Degen, CL (2015). Nanometer-scale isotope analysis of bulk diamond by atom probe tomography. Diam Relat Mater 60, 6065.CrossRefGoogle Scholar
Schlesiger, R, Oberdorfer, C, Würz, R, Greiwe, G, Stender, P, Artmeier, M, Pelka, P, Spaleck, F & Schmitz, G (2010). Design of a laser-assisted tomographic atom probe at Münster University. Rev Sci Instrum 81, 043703.CrossRefGoogle ScholarPubMed
Schreiber, DK, Chiaramonti, AN, Gordon, LM & Kruska, K (2014). Applicability of post-ionization theory to laser-assisted field evaporation of magnetite. Appl Phys Lett 105, 244106.CrossRefGoogle Scholar
Schreiber, DK, Chiaramonti, AN & Kruska, K (2020). Compositional dependencies of Ni- and Fe-oxides to experimental parameters in atom probe tomography. In 2020 TMS Annual Meeting & Exhibition.Google Scholar
Silaeva, EP, Arnoldi, L, Karahka, ML, Deconihout, B, Menand, A, Kreuzer, HJ & Vella, A (2014). Do dielectric nanostructures turn metallic in high-electric dc fields? Nano Lett 14, 60666072.CrossRefGoogle ScholarPubMed
Silaeva, EP, Karahka, M & Kreuzer, HJ (2013). Atom probe tomography and field evaporation of insulators and semiconductors: Theoretical issues. Curr Opin Solid State Mater Sci 17, 211216.CrossRefGoogle Scholar
Stender, P, Oberdorfer, C, Artmeier, M, Pelka, P, Spaleck, F & Schmitz, G (2007). New tomographic atom probe at University of Muenster, Germany. Ultramicroscopy 107, 726733.CrossRefGoogle ScholarPubMed
Stiller, K, Viskari, L, Sundell, G, Liu, F, Thuvander, M, Andrén, H-O, Larson, DJ, Prosa, T & Reinhard, D (2013). Atom probe tomography of oxide scales. Oxid Met 79, 227238.CrossRefGoogle Scholar
Talbot, E, Lardé, R, Pareige, P, Khomenkova, L, Hijazi, K & Gourbilleau, F (2013). Nanoscale evidence of erbium clustering in Er-doped silicon-rich silica. Nanoscale Res Lett 8, 39.CrossRefGoogle ScholarPubMed
Taylor, BN & Kuyatt, CE (1994). NIST Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results: NIST Technical Note 1297.CrossRefGoogle Scholar
Thompson, K, Lawrence, D, Larson, DJ, Olson, JD, Kelly, TF & Gorman, B (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.CrossRefGoogle ScholarPubMed
Tsong, TT (1978). Field ion image formation. Surf Sci 70, 211233.CrossRefGoogle Scholar
Tsong, TT (1984). Pulsed-laser-stimulated field ion emission from metal and semiconductor surfaces: A time-of-flight study of the formation of atomic, molecular, and cluster ions. Phys Rev B 30, 49464961.CrossRefGoogle Scholar
Tsong, TT, Block, JH, Nagasaka, M & Viswanathan, B (1976). Photon stimulated field ionization. J Chem Phys 65, 24692470.CrossRefGoogle Scholar
Tsong, TT & Kinkus, TJ (1984). Energy distributions of pulsed-laser field-desorbed gaseous ions and field-evaporated metal ions: A direct time-of-flight measurement. Phys Rev B 29, 529542.CrossRefGoogle Scholar
Tsong, TT, Kinkus, TJ & McLane, SB (1983). Pulsed-laser stimulated field desorption of gas molecules and field evaporation of metal atoms. J Chem Phys 78, 74977498.CrossRefGoogle Scholar
Tsong, TT, Liou, Y & McLane, SB (1984). Methods for a precision measurement of ionic masses and appearance energies using the pulsed-laser time-of-flight atom probe. Rev Sci Instrum 55, 12461254.CrossRefGoogle Scholar
Tsong, TT, McLane, SB & Kinkus, TJ (1982). Pulsed-laser time-of-flight atom-probe field ion microscope. Rev Sci Instrum 53, 14421448.CrossRefGoogle Scholar
Vella, A (2013). On the interaction of an ultra-fast laser with a nanometric tip by laser assisted atom probe tomography: A review. Ultramicroscopy 132, 518.CrossRefGoogle ScholarPubMed
Vella, A, Mazumder, B, Da Costa, G & Deconihout, B (2011). Field evaporation mechanism of bulk oxides under ultra fast laser illumination. J Appl Phys 110, 044321.CrossRefGoogle Scholar
Viswanathan, B, Drachsel, W, Block, JH & Tsong, TT (1979). Photon enhanced field ionization on semiconductor surfaces. J Chem Phys 70, 25822583.CrossRefGoogle Scholar
Vurpillot, F, Houard, J, Vella, A & Deconihout, B (2009). Thermal response of a field emitter subjected to ultra-fast laser illumination. J Phys D Appl Phys 42, 125502.CrossRefGoogle Scholar
Weigmann, W, Drachsel, W, Jaenicke, S & Block, JH (1984). Field ionization and field desorption stimulated by synchrotron radiation. J Phys Colloq 45, C9-105.CrossRefGoogle Scholar
Weigmann, W, Jaenicke, S, Pitts, J, Drachsel, W & Block, JH (1986). Photon induced field desorption of hydrogen and noble gasses from tungsten. J Phys Colloq 47, C2-145.CrossRefGoogle Scholar
Supplementary material: Image

Chiaramonti et al. supplementary material

Chiaramonti et al. supplementary material

Download Chiaramonti et al. supplementary material(Image)
Image 154.7 KB