Article contents
Exotic Manganese Dioxide Structures in Niobium Oxides Capacitors
Published online by Cambridge University Press: 28 September 2012
Abstract
The production of a Tantalum solid electrolytic capacitor requires the impregnation of MnO2 by pyrolysis in one of the several manufacturing steps. It has been reported that niobium oxides are a good alternative, presenting potentially better dielectric properties and a better cost effectiveness. Thus, it is important to study the conditions and the effect of the MnO2 impregnation on niobium oxide in order to understand and optimize the parameters of this process. The morphology and microstructure of the anode is one of the most important aspects that interfere with the dielectric properties of the capacitor. In this work, it is presented a study of the morphology and microstructure of different niobium oxide anodes after electrochemical oxidation (NbO/Nb2O5 core-shell grain structure), and after MnO2 impregnation with different pyrolysis temperatures. This impregnation is made by dipping the anodes, with the NbO/Nb2O5 core-shell structure, in a slurry of Mn(NO3)2. Heating this slurry while the anode is dipped, will lead to a pyrolysis reaction where the liberation of NO2 occurs as a gas, and where the product MnO2 solidifies around the grains.
- Type
- Materials Sciences
- Information
- Microscopy and Microanalysis , Volume 18 , Supplement S5: Portuguese Supplement , August 2012 , pp. 99 - 100
- Copyright
- Copyright © Microscopy Society of America 2012
- 1
- Cited by