Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T11:30:21.064Z Has data issue: false hasContentIssue false

Ex Situ Transmission Electron Microscopy: A Fixed-Bed Reactor Approach

Published online by Cambridge University Press:  09 December 2005

Chris E. Kliewer
Affiliation:
ExxonMobil Research and Engineering Company, 1545 Route 22 East, Annandale, NJ 08801-0998, USA
Gabor Kiss
Affiliation:
ExxonMobil Research and Engineering Company, 1545 Route 22 East, Annandale, NJ 08801-0998, USA
Gregory J. DeMartin
Affiliation:
ExxonMobil Research and Engineering Company, 1545 Route 22 East, Annandale, NJ 08801-0998, USA
Get access

Abstract

A fixed-bed reactor has been designed and constructed for ex situ transmission electron microscopy (TEM) studies of heterogeneous catalysts. The ex situ facility exposes a fully prepared TEM sample on a grid to actual process conditions (e.g., temperature, pressure, gas composition, etc.) by placing the grid at the exit section of a conventional fixed-bed reactor. A unique reactor design allows grid transfer into the electron microscope and back into the reactor again under a controlled (inert) environment, thus allowing time-resolved monitoring of catalyst morphology changes under realistic, well-controlled conditions. This facility stands completely independent of the TEM. Thus, no special TEM modifications are required and long-term ex situ studies do not impact microscope utilization. The utility of the facility is demonstrated via the oxidation of intermediate size (∼20–∼80 nm) supported copper particles.

Type
MATERIALS APPLICATIONS
Copyright
© 2006 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrams, I.M. & McBain, J.W. (1944a). A closed cell for electron microscopy. J Appl Phys 15, 607609.Google Scholar
Abrams, I.M. & McBain, J.W. (1944b). A closed cell for electron microscopy. Science 100, 273274.Google Scholar
Alani, P. & Pan, M. (2000). “In-situ” TEM studies and “real-time” digital imaging. Microsc Microanal 6(Suppl. 2), 10181019.Google Scholar
Allard, L.F., Ailey, K.S., Dayte, A.K., & Bigelow, W.C. (1997). An ex situ reactor with anaerobic specimen transfer capabilities for TEM studies of reactive (catalyst) systems. Microsc Microanal 3(Suppl. 2), 595596.Google Scholar
Bellare, J.R. (1988). Cryo-electron and optical microscopy of surfactant microstructures. Ph.D. Thesis, University of Minnesota.
Bharadwaj, M.D., Tropia, L., Gibson, M., & Yang, J.C. (2000). Initial kinetics of copper oxidation in different oxidizing atmospheres as studied by in situ UHV-TEM. Microsc Microanal 6(Suppl. 2), 4243.Google Scholar
Boyes, E.D. (1997). Controlled environment (ECELL) HREM. Microsc Microanal 3(Suppl. 2), 589599.Google Scholar
Boyes, E.D. (2004). ETEM issues and opportunities for dynamic in situ experiments. Microsc Microanal 10(Suppl. 2), 130131.Google Scholar
Boyes, E.D. & Gai, P.L. (1997). Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 6, 219212.Google Scholar
Boyes, E.D. & Gai, P.L. (2004). ETEM issues and opportunities for dynamic in situ experiments. Microsc Today 12, 2427.Google Scholar
Butler, E.P. & Hale, K.F. (1981). Dynamic Experiments in the Electron Microscope. Amsterdam: North-Holland.
Castner, D.G. & Chan, I. (1986). Controlled atmosphere catalyst characterization by X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and analytical electron microscopy (AEM). In Microbeam Analysis Proceedings, Romig, A.D., Jr., Chambers, W.F. (Eds.), pp. 617619. San Francisco: San Francisco Press, Inc.
Castner, D.G., Watson, P.R., & Chan, I. (1989). X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and analytical electron microscopy studies in cobalt catalysts 1. Characterization of calcined catalysts. J Phys Chem 93, 31883194.Google Scholar
Chan, I. (1985). A controlled atmosphere specimen holder for transmission electron microscopy. J Electron Microsc Tech 2, 525532.Google Scholar
Chen, J.J. & Ruckenstein, E. (1981). Role of interfacial phenomena in the behavior of alumina-supported palladium crystallites in oxygen. J Phys Chem 85, 16061612.Google Scholar
Chiou, W.A. & Mitra, R. (2000). In situ TEM study of straining of free standing nickel thin films. Microsc Microanal 6(Suppl. 2), 464465.Google Scholar
Chu, F. & Mitchell, T.E. (1995). TEM investigation of the low temperature phase of HfV2. Microsc Microanal 1(Suppl. 2), 252253.Google Scholar
Cronin, S.B., Lin, Y.M., Rabin, O., Black, M.R., Gai, P.L., Dresselhaus, G., & Dresselhaus, M. (2001). Bismuth nanowires for potential applications in nanoscale electronics technology. Microsc Microanal 7(Suppl. 2), 418419.Google Scholar
Crozier, P.A. (2001). In situ characterization of dynamic changes in the microstructure and chemistry of catalysts. Microsc Microanal 7(Suppl. 2), 10581059.Google Scholar
Crozier, P.A. & Dayte, A.K. (1999). In-situ HREM observation of reduction of PdO to Pd metal. Microsc Microanal 5(Suppl. 2), 336337.Google Scholar
Crozier, P.A. & Sharma, R. (1998). In situ oxidation and reduction of small Pd particles on silica. Microsc Microanal 4(Suppl. 2), 748749.Google Scholar
Dahmen, U., Radetic, T., Hagege, S., Zhang, L., & Johnson, E. (2003). TEM observations on the role of defects in melting, migration and transformation of Pb-rich precipitates in Al. Microsc Microanal 9(Suppl. 2), 5455.Google Scholar
Edington, J.W. (1976). Practical Electron Microscopy in Materials Science. Princeton, NJ: Van Nostrand Reinhold Company.
Fontana, M.G. & Greene, N.D. (1978). Corrosion Engineering, 2nd ed. New York: McGraw-Hill Inc.
Gai, P.L. (1981). Dynamic studies of metal oxide catalysts: MoO3. Phil Mag A 43, 841855.Google Scholar
Gai, P.L. (1997a). A new structural transformation mechanism in catalytic oxides. Acta Cryst B 53, 346352.Google Scholar
Gai, P.L. (1997b). Unveiling novel reaction processes in catalysis by environmental HREM (EHREM). Microsc Microanal 3(Suppl. 2), 617618.Google Scholar
Gai, P.L. (1998). Direct probing of gas molecule-solid catalyst interactions on the atomic scale. Adv Mater 10, 12591263.Google Scholar
Gai, P.L. (1999). Designer nanostructures of catalysts in the environmental-HREM. Microsc Microanal 5(Suppl. 2), 686687.Google Scholar
Gai, P.L. (2002). In situ molecular imaging of heterogeneous catalytic processes in liquid environments. Microsc Microanal 8(Suppl. 2), 412413.Google Scholar
Gai, P.L. (2004). In situ environmental TEM (ETEM) of n-butane oxidation: Advances and challenges in the catalyst microstructural design. Microsc Microanal 10(Suppl. 2), 3839.Google Scholar
Gai, P.L., Boyes, E.D., & Bart, J.C.J. (1982). Electron microscopy of industrial catalysts. Phil Mag A 45, 531547.Google Scholar
Gai, P.L. & Kourtakis, K. (1995). Solid-state defect mechanism in vanadyl pyrophosphate catalysts: Implications for selective oxidation. Science 267, 661663.Google Scholar
Gai, P.L. & Kourtakis, K. (1998). Effects of cation promoters in selective catalyzation of n-butane. Microsc Microanal 4(Suppl. 2), 742743.Google Scholar
Gai, P.L., Kourtakis, K., Coulson, D.R., & Sonnichsen, G.C. (1997). HREM microstructural studies on the effect of steam exposure and cation promoters on vanadium phosphorous oxides: New correlations with n-butane oxidation reaction chemistry. J Phys Chem B 101, 99169925.Google Scholar
Gai, P.L., Kurtakis, K., & Ziemecki, S. (2000). In situ environmental high resolution electron microscopy of adiponitrile hydrogenation. Microsc Microanal 6(Suppl. 2), 67.Google Scholar
Gai, P.L., Kourtakis, K., & Ziemecki, S. (2001). In situ nanoscale studies of liquid polymerization reactions in the manufacture of polyamides and combinatorial catalysts. Microsc Microanal 7(Suppl. 2), 10601061.Google Scholar
Gai, P.L., Smith, B.C., & Owen, G. (1990). Bulk diffusion of metal particles on ceramic substrates. Nature 348, 430432.Google Scholar
Gai-Boyes, P.L. (1992). Defects in oxide catalysts: Fundamental studies of catalyst in action. Catal Rev Sci Eng 34, 154.Google Scholar
Gai-Boyes, P.L., Saltzberg, M.A., & Vega, A. (1993). Structures and stabilization mechanisms in chemically stabilized ceramics. J Sol State Chem 106, 3547.Google Scholar
Ge, D., Domnich, V., & Gogotsi, Y. (2003). In situ TEM study of thermal stabilities of metastable silicon phases. Microsc Microanal 9(Suppl. 2), 484CD485CD.Google Scholar
Hansen, T.W., Wagner, J.B., Hansen, P.L., Dahl, S., Topsoe, H., & Jacobsen, C.J.H. (2001). Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294, 15081510.Google Scholar
Haque, M.A., Saif, M.T.A., Robach, J.S., & Robertson, M. (2003). Correlating deformation mechanisms with mechanical properties in free stranding thin metallic films. Microsc Microanal 9(Suppl. 2), 898CD899CD.Google Scholar
Hattar, K., Han, J., Saif, T., & Robertson, I.M. (2004). Development and application of a MEMS-based in situ TEM straining device for ultra-fine grained metallic systems. Microsc Microanal 10(Suppl. 2), 5051.Google Scholar
Helveg, S., Lopez-Cartes, C., Sehested, J., Hansen, P.L., Clausen, B.S., Rostrup Nielsen, J.R., Abild-Pedersen, F., & Norskov, J.K. (2004). Atomic-scale imaging of carbon nanofiber growth. Nature 27, 426429.Google Scholar
Hirsch, P., Howie, A., Nicholson, R.B., Pashley, D.W., & Whelan, M.J. (1965). Electron Microscopy of Thin Crystals. New York: Robert E. Krieger Publishing Company.
Howe, J.M. (1995). In situ hot stage high-resolution transmission electron microscope studies of the mechanisms and kinetics of precipitation reactions. Microsc Microanal 1, 228229.Google Scholar
Kamino, T., Yaguchi, T., & Hashimoto, T. (2003). High temperature in situ electron microscopy using a dedicated scanning transmission electron microscope. Microsc Microanal 9(Suppl. 2), 922CD923CD.Google Scholar
Klie, R.F., Browning, N.D., & Zhu, Y. (2002). Atomic scale characterization of oxygen vacancy dynamics by in situ reduction and analytical atomic resolution STEM. Microsc Microanal 8(Suppl. 2), 1396CD1370CD.Google Scholar
Kliewer, C.E., Disko, M.M., Soled, S.L., & DeMartin, G.J. (1999). A reactor for “ex-situ” TEM catalyst characterization. Microsc Microanal 5(Suppl. 2), 926927.Google Scholar
Kliewer, C.E., Disko, M.M., Soled, S.L., DeMartin, G.J., Baumgartner, J.E., & Miseo, S. (2000). Copper oxidation via “ex-situ” TEM. Microsc Microanal 6(Suppl. 2), 378379.Google Scholar
Konno, T.J. & Sinclair, R. (1992). Crystallization of silicon in aluminum/amorphous silicon multilayers. Phil Mag B 66, 749765.Google Scholar
Konno, T.J. & Sinclair, R. (1995). Metal-mediated crystallization of amorphous silicon in silicon-silver layered systems. Phil Mag B 71, 163178.Google Scholar
Lian, J., Wang, L.M., & Ewing, R.C. (2002). In situ TEM study of order-disorder transition in murataite ceramics. Microsc Microanal 8(Suppl. 2), 1424CD1425CD.Google Scholar
Lian, J., Wang, L.M., & Ewing, R.C. (2004). Phase decomposition-induced nanocrystal formation and structural disordering in murataite structure. Microsc Microanal 10(Suppl. 2), 586587.Google Scholar
Liu, R.J., Crozier, P.A., Smith, C.M., Hucul, D.A., Blackson, J., & Salaita, G. (2003). In situ TEM studies of sintering of Pd.alumina catalysts. Microsc Microanal 9(Suppl. 2), 1024CD1025CD.Google Scholar
Liu, R.J., Crozier, P.A., Smith, C.M., Hucul, D.A., Blackson, J., & Salaita, G. (2004). In situ TEM studies of sintering in Pd/Al2O3 catalysts. Microsc Microanal 10(Suppl. 2), 488CD489CD.Google Scholar
Luo, Z.P., Miller, D.J., & Mitchell, J.F. (2001). The charge ordering behavior of colossal magnetoresistive (CMR) layered compounds La2−2xSr1+2xMn2O7 (x = 0.5–0.6). Microsc Microanal 7(Suppl. 2), 410411.Google Scholar
McCabe, R.J., Misra, A., & Mitchell, T.E. (2002). The use of stereomicroscopy in conjunction with in situ straining TEM for studying dislocation behavior. Microsc Microanal 8(Suppl. 2), 1382CD1383CD.Google Scholar
Medlin, D.L. (2001). In situ TEM analysis of facet motion in gold Σ = 3 {112} boundaries. Microsc Microanal 7(Suppl. 2), 324325.Google Scholar
Medlin, D.L. (2002). Morphological evolution and junction dynamics at faceted grain boundaries. Microsc Microanal 8(Suppl. 2), 1400CD1401CD.Google Scholar
Minor, A.M., Lilleodden, E.T., Jin, M., Stach, E.A., Chrzan, D., Morris, J.W., Jr., Friedmann, T.A., Xiao, X., Auciello, O.H., & Carlisle, J.A. (2003). In-situ nanoindentation—A unique probe of deformation response in materials. Microsc Microanal 9(Suppl. 2), 900901.Google Scholar
Minor, A.M., Morris, J.W., Jr., & Stach, E.A. (2001a). Quantitative in situ nanoindentation in an electron microscope. Appl Phys Lett 79, 16251627.Google Scholar
Minor, A.M., Stach, E.A., & Morris, J.W., Jr. (2001b). Quantitative in situ nanoindentation of thin films in a transmission electron microscope. Microsc Microanal 7(Suppl. 2), 912913.Google Scholar
Nakayama, T., Arai, M., & Nishiyama, Y. (1983). Formation of pitted particles and redispersion in supported nickel catalysts during heating in oxygen and hydrogen. J Catal 79, 497500.Google Scholar
Nakayama, T., Arai, M., & Nishiyama, Y. (1984). Dispersion of nickel particles supported on alumina and silica in oxygen and hydrogen. J Catal 87, 108115.Google Scholar
Norton, M.G., Bentley, J., & Biggers, R.R. (1995). In situ electron microscope observations of structural transformations in single crystal lanthanum aluminate. Microsc Microanal 1(Suppl. 2), 238239.Google Scholar
Oh, S.G., Rodriguez, N.M., & Baker, R.T.K. (1992). In-situ electron microscopy studies of surface segregation in bimetallic catalyst particles. J Catal 136, 584597.Google Scholar
Oleshko, V.P. & Howe, J.M. (2004). In situ EFTEM/PEELS investigation of melting behavior of industrial Al-Si alloy small particles. Microsc Microanal 10(Suppl. 2), 350351.Google Scholar
Parkinson, G.M. (1991). Controlled environment transmission electron microscopy (CETEM) of catalysts. In Proceedings of the Institute of Physics Electron Microscopy and Analysis Group Conference, University of Bristol, UK & Institute of Physics Conference Series No. 119: Section 4. Humphreys, F.J. (Ed.), pp. 151156. New York: Institute of Physics.
Parkinson, G.M. & White, D. (1986). The application of a controlled atmosphere reaction cell for studying electroactive polymers by TEM. In Proceedings of the XI International Congress on Electron Microscopy, Koyoto, Japan, pp. 331332.
Parsons, D.F. (1974). Structure of wet specimens in electron microscopy. Science 186, 407414.Google Scholar
Pashley, D.W., Stowell, M.J., Jacobs, M.H., & Law, T.J. (1964). The growth and structure of gold and silver deposits formed by evaporation inside an electron microscope. Phil Mag 10, 127158.Google Scholar
Potoczna-Petru, D., Jablonski, J.M., Okal, O., & Krajczyk, L. (1998). Influence of oxidation-reduction treatment on the microstructure of Co/SiO2 catalyst. Appl Catal A: General 175, 113120.Google Scholar
Potoczna-Petru, D. & Kepinski, L. (1991). Effect of oxidation-reduction treatment on the behavior of model silica supported cobalt catalysts. Catal Lett 9, 355362.Google Scholar
Potoczna-Petru, D. & Krajczyk, L. (1995). Microstructure evolution of Co particles supported on carbon induced by oxidation-reduction treatment. J Mater Sci Lett 14, 12941297.Google Scholar
Rodriguez, N.M., Oh, S.G., Dalla-Betta, R.A., & Baker, R.T.K. (1995). In situ electron microscopy of palladium supported on Al2O3, SiO2, and ZrO2 in oxygen. J Catal 157, 676686.Google Scholar
Ross, F.M. & Searson, P.C. (1995). In situ microscopy of the anodic etching of silicon. Microsc Microanal 1(Suppl. 2), 232233.Google Scholar
Ross, F.M., Williamson, M.J., Tromp, R.M., Hull, R., & Vereecken, P.M. (2002). In situ transmission electron microscopy of copper electrodeposition. Microsc Microanal 8(Suppl. 2), 420421.Google Scholar
Ruckenstein, E. & Chen, J.J. (1982). Wetting phenomena during alternate heating in O2 and H2 of supported metal crystallites. J Colloid Interface Sci 86, 111.Google Scholar
Ruckenstein, E. & Lee, S.H. (1984). Redispersion and migration of nickel supported on alumina. J Catal 86, 457464.Google Scholar
Sawyer, L.C. & Grubb, D.T. (1987). Polymer Microscopy. New York: Chapman and Hall.
Sharma, R. (2003). In situ observations of carbon nanotube formation and growth process. Microsc Microanal 9(Suppl. 2), 302CD302CD.Google Scholar
Sharma, R. (2004). Understanding the carbon nanotube growth mechanism by in situ microscopy. Microsc Microanal 10(Suppl. 2), 368369.Google Scholar
Sharma, R. & Crozier, P.A. (2000). Quantification of CeO reduction by in situ electron energy-loss spectroscopy. Microsc Microanal 6(Suppl. 2), 1213.Google Scholar
Sharma, R. & Crozier, P. (2002). In situ determination of local Ce oxidation states during redox reactions. Microsc Microanal 8(Suppl. 2), 600CD601CD.Google Scholar
Sharma, R. & Iqbal, Z. (2004). In situ observations of carbon nanotube formation using environmental transmission electron microscopy. Appl Phys Lett 84, 990992.Google Scholar
Sharma, R., McKelvy, M.J., Bearat, H., Chizmeshya, A.V.G., & Carpenter, R.W. (2001). In situ observation of nanocrystal formation via dehydroxylation. Microsc Microanal 7(Suppl. 2), 438439.Google Scholar
Sharma, R., McKelvy, M.J., Bearat, H., Chizmeshya, A.V.G., & Carpenter, R.W. (2002). Developing a mechanistic understanding of CO2 mineral sequestration process for power plants. Microsc Microanal 8(Suppl. 2), 796CD797CD.Google Scholar
Shewmon, P.G. (1969). Transformations in Metals. New York: McGraw-Hill Inc.
Sinclair, R. & Konno, T.J. (1994). In situ HREM: Application to metal-mediated crystallization. Ultramicroscopy 56, 225232.Google Scholar
Sinclair, R. & Min, K.H. (2002). In situ HREM of crystallization reactions. Microsc Microanal 8(Suppl. 2), 416417.Google Scholar
Sinclair, R. & Parker, M.A. (1986). High-resolution transmission electron microscopy of silicon re-growth at controlled elevated temperatures. Nature 322, 531533.Google Scholar
Smith, D.A., Mehta, S.C., & Erb, U. (1995). In situ grain growth in electrodeposited nanocrystalline Ni-1.2wt%P alloy. Microsc Microanal 1(Suppl. 2), 250251.Google Scholar
Stach, E.A., Dahmen, U., & Nix, W.D. (2000a). Real time observations of dislocation mediated plasticity in the epitaxial aluminum (110)/silicon (001) thin film system. Microsc Microanal 6(Suppl. 2), 438439.Google Scholar
Stach, E.A., Hull, R., Tromp, R.M., Ross, F.M., Reuter, M.C., & Beam, J.C. (1999). In situ TEM studies of the interaction between dislocations in SiGe heterostructures. Microsc Microanal 5(Suppl. 2), 728729.Google Scholar
Stach, E.A., Kisielowski, C.F., Wong, W.S., Sands, T., & Cheung, N.W. (2000b). Real time observations of nanopipe formation, dislocation motion, and nitrogen desorption in GaN. Microsc Microanal 6(Suppl. 2), 10961097.Google Scholar
Storaska, G.A. & Howe, J.M. (2000). In situ TEM investigation of the liquid/solid interface in Al-Si Alloys. Microsc Microanal 6(Suppl. 2), 10681069.Google Scholar
Sun, H.P., Tian, W., Chen, Y.B., Yu, J.H., Yeadon, M., Boothroyd, C.B., Lukaszew, R.A., Clark, R., & Pan, X.Q. (2004). Growth and structural evolution of nanosized Ni on (001) MgO by in situ TEM. Microsc Microanal 10(Suppl. 2), 272273.Google Scholar
Sushmna, I. & Ruckenstein, E. (1984). Oscillations in crystallite shape during heating in hydrogen of model iron/alumina catalysts. J Catal 90, 241255.Google Scholar
Sushmna, I. & Ruckenstein, E. (1985). Role of physical and chemical interactions in the behavior of supported metal catalysts: Iron on alumina—A case study. J Catal 94, 239288.Google Scholar
Thomas, G. & Goringe, M.J. (1979). Transmission Electron Microscopy of Materials. New York: John Wiley and Sons.
Thoni, W. & Hirsch, P.B. (1976). The reduction on MoO3 at low temperatures. Phil Mag 33, 639662.Google Scholar
Wall, M.A. & Dahmen, U. (1997). Development of an in situ nanoindentation specimen holder for the high voltage electron microscope. Microsc Microanal 3(Suppl. 2), 593594.Google Scholar
Wang, L. & Yang, J.C. (2004). Nano-oxidation dynamics of (001) Cu50at%Au thin film by in situ UHV-TEM. Microsc Microanal 10(Suppl. 2), 382CD383CD.Google Scholar
Wang, Z.L., Petroski, J.M., Green, T.C., & El-Sayed, M.A. (1998). Shape transformation and surface melting of cubic and tetragonal platinum nanocrystals. J Phys Chem B 102, 61456151.Google Scholar
Yagi, K., Kobayashi, K., Tanishiro, Y., & Takayanagi, K. (1985). In situ electron microscope of the initial stage of metal growth on metals. Thin Solid Films 126, 95105.Google Scholar
Yang, J.C., Kolasa, B., Gibson, J.M., & Yeadon, M. (1997). Oxygen surface diffusion in three-dimensional Cu2O growth on Cu(001) thin films. Appl Phys Lett 70, 35223524.Google Scholar
Yang, J.C., Kolasa, B., Gibson, J.M., & Yeadon, M. (1998). Self-limiting oxidation of copper. Appl Phys Lett 73, 28412843.Google Scholar
Yang, J.C., Yeadon, M., Kolasa, B., & Gibson, M. (1999). In situ UHV-TEM oxidation and reduction of metals. Microsc Microanal 5(Suppl. 2), 132133.Google Scholar
Yang, J.C. & Zhou, G. (2003). Nano-oxide formation by in situ oxidation of copper thin films. Microsc Microanal 9(Suppl. 2), 296CD297CD.Google Scholar
Yeadon, M., Lin, M., Boothroyd, C.B., Zheng, H., & Loh, K.P. (2003). In situ growth of BN nanocages. Microsc Microanal 9(Suppl. 2), 914CD915CD.Google Scholar
Zhou, G.W., Bharadwaj, M.D., & Yang, J.C. (2001). Initial oxidation kinetics of copper (110) thin films as investigated by in situ UHV-TEM. Microsc Microanal 7(Suppl. 2), 12741275.Google Scholar
Zhou, G.W. & Yang, J.C. (2002). Initial oxidation kinetics of copper films investigated by in situ UHV-TEM. Microsc Microanal 8(Suppl. 2), 1406CD1407CD.Google Scholar
Zhou, G.W. & Yang, J.C. (2003a). Surface modifications: Evaporation of oxide islands on metal surfaces investigated by in situ TEM. Microsc Microanal 9(Suppl. 2), 298CD299CD.Google Scholar
Zhou, G.W. & Yang, J.C. (2003b). Temperature effect on the Cu2O oxide morphology created by oxidation of Cu (001) as investigated by in situ TEM. Appl Surf Sci 210, 165170.Google Scholar
Zhu, Y. & Tafto, J. (1995). In-situ study of tetragonal-orthorhombic structural transformation in La2−xBaxCuO4. Microsc Microanal 1(Suppl. 2), 230231.Google Scholar