Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T04:39:32.407Z Has data issue: false hasContentIssue false

Evaluation of Controlled-Drift Detectors in X-Ray Spectroscopic Imaging Applications

Published online by Cambridge University Press:  22 May 2009

Andrea Castoldi*
Affiliation:
Politecnico di Milano, Dip. Elettronica e Informazione, P.za Leonardo da Vinci 32, 20133 Milano, Italy INFN, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
Chiara Guazzoni
Affiliation:
Politecnico di Milano, Dip. Elettronica e Informazione, P.za Leonardo da Vinci 32, 20133 Milano, Italy INFN, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
Cigdem Ozkan
Affiliation:
Politecnico di Milano, Dip. Elettronica e Informazione, P.za Leonardo da Vinci 32, 20133 Milano, Italy INFN, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy Universita' degli Studi di Milano, Dip. di Fisica, Via Celoria 16, 20133 Milano, Italy
Giorgio Vedani
Affiliation:
Politecnico di Milano, Dip. Elettronica e Informazione, P.za Leonardo da Vinci 32, 20133 Milano, Italy
Robert Hartmann
Affiliation:
PNSensor GmbH, Römerstrasse 28, 80803 München, Germany MPI-Halbleiterlabor, Otto-Hahn-Ring 6, 81739 München, Germany
Aniouar Bjeoumikhov
Affiliation:
IFG GmbH, Berlin, Germany
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

A detector that looks promising for advanced imaging modalities—such as X-ray absorption contrast imaging, X-ray fluorescence imaging, and diffraction-enhanced imaging—is the controlled-drift detector (CDD). The CDD is a novel two-dimensional X-ray imager with energy resolving capability of spectroscopic quality. It is built on a fully depleted silicon wafer and features fast readout while being operated at or near room temperature. The use of CDDs in the aforementioned applications allows translating these techniques from synchrotron-based experiments to laboratory-size experiments using polychromatic X-ray generators. We have built a dedicated and versatile detection module based on a 36 mm2 CDD chip featuring pixels of 180 × 180 μm2, and we evaluated the system performance in different X-ray imaging applications both with synchrotron-based experiments and in the laboratory environment.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvarez, R.E. & Macovski, A. (1976). Energy-selective reconstruction in X-ray computerized tomography. Phys Med Biol 21, 733744.CrossRefGoogle ScholarPubMed
Bjeoumikhov, A., Langhoff, N., Wedell, R., Beloglazov, V., Lebed'ev, N. & Skibina, N. (2003). New generation of polycapillary lenses: Manufacture and applications. X-Ray Spectrom 32, 172178.CrossRefGoogle Scholar
Castoldi, A., Cattaneo, G., Galimberti, A., Guazzoni, C., Rehak, P. & Strüder, L. (2002). Room-temperature 2-D X-ray imaging with the controlled-drift detector. IEEE Trans Nucl Sci 49, 989994.CrossRefGoogle Scholar
Castoldi, A., Galimberti, A., Guazzoni, C., Rehak, P., Hartmann, R. & Strüder, L. (2006a). Multi-linear silicon drift detectors for X-ray and Compton imaging. Nucl Instrum Methods A 568, 8995.CrossRefGoogle Scholar
Castoldi, A., Galimberti, A., Guazzoni, C., Rehak, P. & Strüder, L. (2003). X-ray imaging and spectroscopy with controlled-drift detectors: Experimental results and perspectives. Nucl Instrum Methods A 512, 250256.CrossRefGoogle Scholar
Castoldi, A., Galimberti, A., Guazzoni, C. & Strüder, L. (2006b). Time-resolved X-ray spectroscopic imaging with novel silicon drift detectors. IEEE Trans Nucl Sci 53, 373377.CrossRefGoogle Scholar
Castoldi, A. & Guazzoni, C. (1999). A new position sensing X-ray detector: Working principle and experimental results. IEEE Trans Electron Dev 46, 329334.CrossRefGoogle Scholar
Castoldi, A., Guazzoni, C., Longoni, A., Gatti, E., Rehak, P. & Strüder, L. (1997). Conception and design criteria of a novel silicon device for the measurement of position and energy of X-rays. IEEE Trans Nucl Sci 44, 17241732.CrossRefGoogle Scholar
Castoldi, A., Guazzoni, C., Rehak, P. & Strüder, L. (2001). Spectroscopic-grade X-ray imaging up to 100 kHz frame rate with controlled-drift detectors. IEEE Trans Nucl Sci 48, 982986.CrossRefGoogle Scholar
Gao, N. & Ponomarev, I.Y. (2003). Polycapillary X-ray optics: Manufacturing status, characterization and the future of the technology. X-ray Spectrom 32, 186194.CrossRefGoogle Scholar
Goldstein, J., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E., Sawyer, L.C. & Michael, J.R. (2003). Scanning Electron Microscopy and X-Ray Microanalysis. New York: Plenum Press.CrossRefGoogle Scholar
Johansson, S.A.E., Campbell, J.L. & Malmqvist, K.G. (Eds.) (1995). Particle-Induced X-Ray Emission Spectrometry (PIXE). New York: Wiley-Interscience.Google Scholar
Kidane, G., Speller, R.D., Royle, G.J. & Hanby, A.M. (1999). X-ray scatter signatures for normal and neoplastic breast tissues. Phys Med Biol 44, 17911802.CrossRefGoogle ScholarPubMed
Lechner, P., Pahlke, A. & Soltau, H. (2004). Novel high-resolution silicon drift detectors. X-ray Spectrom 33, 256261.CrossRefGoogle Scholar
Levine, Z.L. & Ravel, B. (1999). Identification of materials in integrated circuit interconnects using X-ray absorption near edge spectroscopy. J Appl Phys 85, 558564.CrossRefGoogle Scholar
Pani, S., Royle, G.J., Speller, R., Castoldi, A., Galimberti, A. & Guazzoni, C. (2007). Use of a novel controlled-drift detector for diffraction enhanced breast imaging. Nucl Instrum Methods A 573, 133136.CrossRefGoogle Scholar
Roy, S.C., Lynn, K. & Pratt, R.H. (1999). Elastic scattering of photons. Radiat Phys Chem 56, 326.CrossRefGoogle Scholar
van Grieken, R.E. & Marcowicz, A.A. (Eds.) (2002). Handbook of X-Ray Spectrometry. New York: Marcel Dekker, Inc.Google Scholar