Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-07T08:31:27.388Z Has data issue: false hasContentIssue false

Estimation of the Reconstruction Parameters for Atom Probe Tomography

Published online by Cambridge University Press:  04 July 2008

Baptiste Gault*
Affiliation:
Australian Key Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia
Frederic de Geuser
Affiliation:
ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Clayton, Victoria 3800, Australia
Leigh T. Stephenson
Affiliation:
Australian Key Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia
Michael P. Moody
Affiliation:
Australian Key Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia
Barrington C. Muddle
Affiliation:
ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Clayton, Victoria 3800, Australia
Simon P. Ringer
Affiliation:
Australian Key Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

The application of wide field-of-view detection systems to atom probe experiments emphasizes the importance of careful parameter selection in the tomographic reconstruction of the analyzed volume, as the sensitivity to errors rises steeply with increases in analysis dimensions. In this article, a self-consistent method is presented for the systematic determination of the main reconstruction parameters. In the proposed approach, the compression factor and the field factor are determined using geometrical projections from the desorption images. A three-dimensional Fourier transform is then applied to a series of reconstructions, and after comparing to the known material crystallography, the efficiency of the detector is estimated. The final results demonstrate a significant improvement in the accuracy of the reconstructed volumes.

Type
Microanalysis
Copyright
Copyright © Microscopy Society of America 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bas, P., Bostel, A., Deconihout, B. & Blavette, D. (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87/88, 298304.CrossRefGoogle Scholar
Blavette, D., Bostel, A., Sarrau, J.M., Deconihout, B. & Menand, A. (1993a). An atom probe for three-dimensional tomography. Nature 363, 432435.CrossRefGoogle Scholar
Blavette, D., Cadel, E., Fraczkiewicz, A. & Menand, A. (1999). Three-dimensional atomic-scale imaging of impurity segregation to line defects. Science 286, 23172319.CrossRefGoogle ScholarPubMed
Blavette, D., Deconihout, B., Bostel, A., Sarrau, J.M., Bouet, M. & Menand, A. (1993b). The tomographic atom probe: A quantitative three-dimensional nanoanalytical instrument on an atomic scale. Rev Sci Instrum 64, 29112919.CrossRefGoogle Scholar
Brandon, D.G. (1964). The accurate determination of crystal orientation from field ion micrographs. J Sci Instrum 41, 373375.CrossRefGoogle Scholar
Brandon, D.G. (1968). Field evaporation and gas impact, field etching and field deformation. In Field Ion Microscopy, Hren, J.J. & Ranganathan, S. (Eds.), pp. 2852. New York: Plenum.CrossRefGoogle Scholar
Camus, P.P., Larson, D.J. & Kelly, T.F. (1995). A method for reconstructing and locating atoms on the crystal lattice in three dimensional atom probe data. Appl Surf Sci 87/88, 305310.CrossRefGoogle Scholar
Cerezo, A., Godfrey, T.J. & Smith, G.D.W. (1988). Application of a position-sensitive detector to atom probe microanalysis. Rev Sci Instrum 59, 862866.CrossRefGoogle Scholar
Cerezo, A., Warren, P.J. & Smith, G.D.W. (1999). Some aspects of image projection in the field-ion microscope. Ultramicroscopy 79, 251257.CrossRefGoogle Scholar
de Geuser, F., Lefebvre, W. & Blavette, D. (2006). 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy. Phil Mag Lett 86, 227234.CrossRefGoogle Scholar
Dreschler, M. & Wolf, D. (1958). Zur Analyse von Feldionenmikroscop-Aufnahmen mit atomarer Auflösung. Proc 4th Int Conf Electron Microscopy, pp. 835848. Berlin: Springer.Google Scholar
Edwards, G.A., Stiller, K., Dunlop, G.L. & Couper, M.J. (1998). The precipitation sequence in Al-Mg-Si alloys. Acata Mat 46, 38933904.CrossRefGoogle Scholar
Gault, B., Vurpillot, F., Vella, A., Gilbert, M., Menand, A., Blavette, D. & Deconihout, B. (2006). Design of a femtosecond laser assisted tomographic atom probe. Rev Sci Instrum 77, 043705.CrossRefGoogle Scholar
Geiser, B.P., Kelly, T.F., Larson, D.J., Schneir, J. & Roberts, J.P. (2007). Spatial distribution maps for atom probe tomography. Micros Microanal 13, 437447.CrossRefGoogle ScholarPubMed
Gomer, R. (1961). Field Emission and Field Ionization. London: Oxford University Press.Google Scholar
Gorman, B. (2007). Atom probe reconstruction refinements by pre- and post-analysis TEM structure quantification. Microsc Microanal 13, 16161617.CrossRefGoogle Scholar
Hono, K., Hiraga, K., Wang, Q., Inoue, A. & Sakurai, T. (1992). The microstructure evolution of a Fe73.5Si13.5B9Nb3Cu1 nanocrystalline soft magnetic material. Acta Met Mat 40, 21372147.CrossRefGoogle Scholar
Hyde, J.M., Cerezo, A., Setna, R.P., Warren, P.J. & Smith, G.D.W. (1994). Lateral and depth scale calibration of the position sensitive atom probe. Appl Surf Sci 76/77, 382391.CrossRefGoogle Scholar
Kellogg, G.L. & Tsong, T.T. (1980). Pulsed-laser atom-probe field-ion microscopy. J Appl Phys 51, 11841193.CrossRefGoogle Scholar
Kelly, T.F., Camus, P.P., Larson, D.J., Holzman, L.M. & Bajikar, S.S. (1996). On the many advantages of local electrode atom probes. Ultramicroscopy 62, 2942.CrossRefGoogle ScholarPubMed
Kelly, T.F., Gribb, T.T., Olson, J.D., Martens, R.L., Shepard, J.D., Wiener, S.A., Kunicki, T.C., Ulfig, R.M., Lenz, D.R., Strennen, E.M., Oltman, E., Bunton, J.H. & Strait, D.R. (2004). First data from a commercial local electrode atom probe (LEAP). Microsc Microanal 10, 373383.CrossRefGoogle ScholarPubMed
Kelly, T.F., Larson, D.J., Thompson, K., Alvis, R.L., Bunton, J.H., Olson, J.D. & Gorman, B.P. (2007). Atom probe tomography of electronic materials. Annu Rev Mater Res 37, 681727.CrossRefGoogle Scholar
Kelly, T.F. & Miller, M.K. (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78, 031101.CrossRefGoogle ScholarPubMed
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (Eds.) (1996). Atom Probe Field Ion Microscopy. Oxford: Oxford University Press.CrossRefGoogle Scholar
Moody, M.P., Stephenson, L.T., Liddicoat, P.V. & Ringer, S.P. (2007). Contingency table techniques for three dimensional atom probe tomography. Microsc Res Tech 70, 258268.CrossRefGoogle ScholarPubMed
Müller, E.W. (1965). Field ion microscopy. Science 149, 591601.CrossRefGoogle ScholarPubMed
Müller, E.W. & Bahadur, K. (1956). Field ionization of gases at a metal surface and the resolution of the FIM. Phys Rev 102, 624631.CrossRefGoogle Scholar
Müller, E.W., Panitz, J.A. & McClean, S.B. (1968). The atom probe field ion microscope. Rev Sci Instrum 39, 8386.CrossRefGoogle Scholar
Newman, R.W., Sanwald, R.C. & Hren, J.J. (1967). A method for indexing field ion micrographs. J Sci Instrum 44, 828830.CrossRefGoogle Scholar
Panitz, J.A. (1973). The 10 cm atom probe. Rev Sci Instrum 44, 10341038.CrossRefGoogle Scholar
Panitz, J.A. (1974). The crystallographic distribution of field-desorbed species. J Vac Sci Tech 11, 207210.CrossRefGoogle Scholar
Panitz, J.A. (1978). Imaging atom-probe mass spectroscopy. Prog Surf Sci 8, 219262.CrossRefGoogle Scholar
Sakurai, T. & Müller, E.W. (1973). Field calibration using the energy distribution of field ionization. Phys Rev Lett 30, 532535.CrossRefGoogle Scholar
Sakurai, T. & Müller, E.W. (1977). Field calibration using the energy distribution of a free-space field ionization. J Appl Phys 48, 26182625.CrossRefGoogle Scholar
Seidman, D.N. (2007). Three-dimensional atom-probe tomography: Advances and applications. Annu Rev Mater Res 37, 127158.CrossRefGoogle Scholar
Suchorski, Y., Schmidt, W.A., Ernst, N. & Block, J.H. (1995). Electrostatic fields above individual atoms. Prog Surf Sci 48, 121134.CrossRefGoogle Scholar
Thompson, K., Flaitz, P.L., Ronsheim, P., Larson, D.J. & Kelly, T.F. (2007). Imaging of arsenic Cottrell atmospheres around silicon defects by three-dimensional atom probe tomography. Science 317, 13701374.CrossRefGoogle ScholarPubMed
Timokhina, I.B., Hodgson, P.D., Ringer, S.P., Zheng, R.K. & Pereloma, E.V. (2007). Precipitate characterisation of an advanced high-strength low-alloy (HSLA) steel using atom probe tomography. Scripta Mat 56, 601604.CrossRefGoogle Scholar
Tsong, T.T. (1971). Measurement of the polarizabilities and field evaporation of individual tungsten atoms. J Chem Phys 54, 42054216.CrossRefGoogle Scholar
Tsong, T.T. (1978). Field ion image formation. Surf Sci 70, 211233.CrossRefGoogle Scholar
Tsong, T.T. (1990). Atom-Probe Field Ion Microscopy. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Tsong, T.T., McLane, S.B. & Kinkus, T.J. (1982). Pulsed-laser time-of-flight atom-probe field ion microscope. Rev Sci Instrum 53, 14421448.CrossRefGoogle Scholar
Vurpillot, F., Bostel, A. & Blavette, D. (1999). The shape of field emitters and the ion trajectories in three-dimensional atom probes. J Microsc 196, 332336.CrossRefGoogle ScholarPubMed
Vurpillot, F., Da Costa, G., Menand, A. & Blavette, D. (2001). Structural analyses in three dimensional atom probe: A Fourier transform approach. J Microsc 203, 295302.CrossRefGoogle ScholarPubMed
Waugh, A.R., Boyes, E.D. & Southon, M.J. (1976). Investigations of field evaporation with a field-desorption microscope. Surf Sci 61, 109142.CrossRefGoogle Scholar
Waugh, A.R. & Southon, M.J. (1977). Surface studies with an imaging atom-probe. Surf Sci 68, 7985.CrossRefGoogle Scholar
Wilkes, T.J., Smith, G.D.W. & Smith, D.A. (1974). On the quantitative analysis of field-ion micrographs. Metallography 7, 403430.CrossRefGoogle Scholar