Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T17:18:25.917Z Has data issue: false hasContentIssue false

Environmental Liquid Cell Technique for Improved Electron Microscopic Imaging of Soft Matter in Solution

Published online by Cambridge University Press:  07 December 2020

Sana Azim*
Affiliation:
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
Lindsey A. Bultema*
Affiliation:
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
Michiel B. de Kock
Affiliation:
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany Centre for Structural Systems Biology, Department of Chemistry, University of Hamburg, Notkestraße 85, 22607Hamburg, Germany
Ernesto Rafael Osorio-Blanco
Affiliation:
Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195Berlin, Germany
Marcelo Calderón
Affiliation:
POLYMAT & Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018Donostia-San Sebastián, Spain IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
Josef Gonschior
Affiliation:
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
Jan-Philipp Leimkohl
Affiliation:
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
Friedjof Tellkamp
Affiliation:
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
Robert Bücker
Affiliation:
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
Eike C. Schulz
Affiliation:
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
Sercan Keskin
Affiliation:
INM – Leibniz Institute for New Materials, Campus D2 2, 66123Saarbrücken, Germany
Niels de Jonge
Affiliation:
INM – Leibniz Institute for New Materials, Campus D2 2, 66123Saarbrücken, Germany Department of Physics, Saarland University, Campus D2 2, 66123Saarbrücken, Germany
Günther H. Kassier
Affiliation:
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany
R.J. Dwayne Miller
Affiliation:
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761Hamburg, Germany Departments of Chemistry and Physics, University of Toronto, 80 St. Georg Street, Toronto, ONM5S 3H6, Canada
*
*Author for correspondence: R.J. Dwayne Miller, E-mail: [email protected]
*Author for correspondence: R.J. Dwayne Miller, E-mail: [email protected]
Get access

Abstract

Liquid-phase transmission electron microscopy is a technique for simultaneous imaging of the structure and dynamics of specimens in a liquid environment. The conventional sample geometry consists of a liquid layer tightly sandwiched between two Si3N4 windows with a nominal spacing on the order of 0.5 μm. We describe a variation of the conventional approach, wherein the Si3N4 windows are separated by a 10-μm-thick spacer, thus providing room for gas flow inside the liquid specimen enclosure. Adjusting the pressure and flow speed of humid air inside this environmental liquid cell (ELC) creates a stable liquid layer of controllable thickness on the bottom window, thus facilitating high-resolution observations of low mass-thickness contrast objects at low electron doses. We demonstrate controllable liquid thicknesses in the range 160 ± 34 to 340 ± 71 nm resulting in corresponding edge resolutions of 0.8 ± 0.06 to 1.7 ± 0.8 nm as measured for immersed gold nanoparticles. Liquid layer thickness 40 ± 8 nm allowed imaging of low-contrast polystyrene particles. Hydration effects in the ELC have been studied using poly-N-isopropylacrylamide nanogels with a silica core. Therefore, ELC can be a suitable tool for in situ investigations of liquid specimens.

Type
Software and Instrumentation
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Sana Azim and Lindsey A. Bultema are the co-first authors and equally contributed to this work.

References

Bergueiro, J & Calderón, M (2015). Thermoresponsive nanodevices in biomedical applications. Macromol Biosci 15, 183199.CrossRefGoogle ScholarPubMed
Besztejan, S, Keskin, S, Manz, S, Kassier, G, Bücker, R, Venegas-Rojas, D, Trieu, HK, Rentmeister, A & Miller, RJD (2017). Visualization of cellular components in a mammalian cell with liquid-cell transmission electron microscopy. Microsc Microanal 23, 4655.CrossRefGoogle Scholar
Brunella, V, Jadhav, SA, Miletto, I, Berlier, G, Ugazio, E, Sapino, S & Scalarone, D (2016). Hybrid drug carriers with temperature-controlled on-off release: A simple and reliable synthesis of PNIPAM-functionalized mesoporous silica nanoparticles. React Funct Polym 98, 3137.CrossRefGoogle Scholar
Bunch, JS, Verbridge, SS, Alden, JS, Van Der Zande, AM, Parpia, JM, Craighead, HG & McEuen, PL (2008). Impermeable atomic membranes from graphene sheets. Nano Lett 8, 24582462.CrossRefGoogle ScholarPubMed
Cameron, VA, Rahimi, A, Dukes, MJ, Poelzing, S, M. McDonald, S & Kelly, DF (2015). Visualizing virus particle mobility in liquid at the nanoscale. Chem Commun 51, 1617616179.CrossRefGoogle Scholar
Cho, H, Jones, MR, Nguyen, SC, Hauwiller, MR, Zettl, A & Alivisatos, AP (2017). The use of graphene and its derivatives for liquid-phase transmission electron microscopy of radiation-sensitive specimens. Nano Lett 17, 414420.CrossRefGoogle ScholarPubMed
Crassous, JJ, Rochette, CN, Wittemann, A, Schrinner, M, Ballauff, M & Drechsler, M (2009). Quantitative analysis of polymer colloids by cryo-transmission electron microscopy. Langmuir 25, 78627871.CrossRefGoogle ScholarPubMed
Cuggino, JC, Osorio-Blanco, ER, Gugliotta, LM, Alvarez Igarzabal, CI & Calderón, M (2019). Crossing biological barriers with nanogels to improve drug delivery performance. J Control Release 307, 221246.CrossRefGoogle ScholarPubMed
de Jonge, N (2018). Theory of the spatial resolution of (scanning) transmission electron microscopy in liquid water or ice layers. Ultramicroscopy 187, 113125.CrossRefGoogle ScholarPubMed
de Jonge, N, Houben, L, Dunin-Borkowski, RE & Ross, FM (2019). Resolution and aberration correction in liquid cell transmission electron microscopy. Nat Rev Mater 4, 6178.CrossRefGoogle Scholar
de Jonge, N, Poirier-Demers, N, Demers, H, Peckys, DB & Drouin, D (2010). Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy 110, 11141119.CrossRefGoogle ScholarPubMed
Dillard, RS, Hampton, CM, Strauss, JD, Ke, Z, Altomara, D, Guerrero-Ferreira, RC, Kiss, G & Wright, ER (2018). Biological applications at the cutting edge of cryo-electron microscopy. Microsc Microanal 24, 406419.CrossRefGoogle ScholarPubMed
Egerton, RF (2013). Control of radiation damage in the TEM. Ultramicroscopy 127, 100108.CrossRefGoogle ScholarPubMed
Ghosh Chaudhuri, R & Paria, S (2012). Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112, 23732433.CrossRefGoogle ScholarPubMed
Giorgio, S, Sao Joao, S, Nitsche, S, Chaudanson, D, Sitja, G & Henry, CR (2006). Environmental electron microscopy (ETEM) for catalysts with a closed E-cell with carbon windows. Ultramicroscopy 106, 503507.CrossRefGoogle ScholarPubMed
Grogan, JM, Schneider, NM, Ross, FM & Bau, HH (2014). Bubble and pattern formation in liquid induced by an electron beam. Nano Lett 14, 359364.CrossRefGoogle ScholarPubMed
Gupta, T, Schneider, NM, Park, JH, Steingart, D & Ross, FM (2018). Spatially dependent dose rate in liquid cell transmission electron microscopy. Nanoscale 10, 77027710.CrossRefGoogle ScholarPubMed
Han, Y, Lu, Z, Teng, Z, Liang, J, Guo, Z, Wang, D, Han, MY & Yang, W (2017). Unraveling the growth mechanism of silica particles in the Stöber method: In situ seeded growth model. Langmuir 33, 58795890.CrossRefGoogle ScholarPubMed
Hauwiller, MR, Ondry, JC, Chan, CM, Khandekar, P, Yu, J & Alivisatos, AP (2019). Gold nanocrystal etching as a means of probing the dynamic chemical environment in graphene liquid cell electron microscopy. J Am Chem Soc 141, 44284437.CrossRefGoogle ScholarPubMed
Hermannsdörfer, J, Tinnemann, V, Peckys, DB & De Jonge, N (2016). The effect of electron beam irradiation in environmental scanning transmission electron microscopy of whole cells in liquid. Microsc Microanal 22, 656665.CrossRefGoogle ScholarPubMed
Hui, SW & Parsons, DF (1974). Electron diffraction of wet biological membranes. Science 184, 7778.CrossRefGoogle ScholarPubMed
Inayoshi, Y, Minoda, H, Arai, Y & Nagayama, K (2012). Direct observation of biological molecules in liquid by environmental phase-plate transmission electron microscopy. Micron 43, 10911098.CrossRefGoogle ScholarPubMed
Kaneko, T (1993). Partial and total electronic stopping cross sections of atoms and solids for protons. Atomic Data and Nuclear Data Tables 53(2), 271340.CrossRefGoogle Scholar
Keskin, S, Besztejan, S, Kassier, G, Manz, S, Bücker, R, Riekeberg, S, Trieu, HK, Rentmeister, A & Miller, RJD (2015). Visualization of multimerization and self-assembly of DNA-functionalized gold nanoparticles using in-liquid transmission electron microscopy. J Phys Chem Lett 6, 44874492.CrossRefGoogle ScholarPubMed
Keskin, S & de Jonge, N (2018). Reduced radiation damage in transmission electron microscopy of proteins in graphene liquid cells. Nano Lett 18, 74357440.CrossRefGoogle ScholarPubMed
Keskin, S, Kunnas, P & de Jonge, N (2019). Liquid-phase electron microscopy with controllable liquid thickness. Nano Lett 19, 46084613.CrossRefGoogle ScholarPubMed
Kirkland, E. J. (2010). Advanced Computing in Electron Microscopy, 2nd edn. New York, NY: Springer Science + Business Media, LLC.CrossRefGoogle Scholar
Klein, KL, Anderson, IM & De Jonge, N (2011). Transmission electron microscopy with a liquid flow cell. J Microsc 242, 117123.CrossRefGoogle ScholarPubMed
Kratz, K, Hellweg, T & Eimer, W (2001). Structural changes in PNIPAM microgel particles as seen by SANS, DLS, and EM techniques. Polymer 42, 66316639.CrossRefGoogle Scholar
Le Caër, S (2011). Water radiolysis: Influence of oxide surfaces on H2 production under ionizing radiation. Water 3, 235253.CrossRefGoogle Scholar
Lee, C, Wei, X, Kysar, JW & Hone, J (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385388.CrossRefGoogle ScholarPubMed
Liao, HG, Niu, K & Zheng, H (2013). Observation of growth of metal nanoparticles. Chem Commun 49, 1172011727.CrossRefGoogle ScholarPubMed
Liao, Y. (2018). Practical Electron Microscopy and Database. www.globalsino.com/EM/.Google Scholar
Libera, MR & Egerton, RF (2010). Advances in the transmission electron microscopy of polymers. Polym Rev 50, 321339.CrossRefGoogle Scholar
Molina, M, Asadian-Birjand, M, Balach, J, Bergueiro, J, Miceli, E & Calderón, M (2015). Stimuli-responsive nanogel composites and their application in nanomedicine. Chem Soc Rev 44, 61616186.CrossRefGoogle ScholarPubMed
Monninger, MK, Nguessan, CA, Blancett, CD, Kuehl, KA, Rossi, CA, Olschner, SP, Williams, PL, Goodman, SL & Sun, MG (2016). Preparation of viral samples within biocontainment for ultrastructural analysis: Utilization of an innovative processing capsule for negative staining. J Virol Methods 238, 7076.CrossRefGoogle ScholarPubMed
Mueller, C, Harb, M, Dwyer, JR & Miller, RJD (2013). Nanofluidic cells with controlled pathlength and liquid flow for rapid, high-resolution in situ imaging with electrons. J Phys Chem Lett 4, 23392347.CrossRefGoogle Scholar
Nagamanasa, KH, Wang, H & Granick, S (2017). Liquid-cell electron microscopy of adsorbed polymers. Adv Mater 29, 1703555 (1–6).CrossRefGoogle ScholarPubMed
Nguyen, TD, Keefe, MAO, Kilaas, R, Gronsky, R & Kortright, JB (1992). Effects of Fresnel fringes on TEM images of interfaces in X-ray multilayers. Physics of X-ray Multilayer Structures Technical Digest 7, 9496.Google Scholar
Nishizawa, Y, Matsui, S, Urayama, K, Kureha, T, Shibayama, M, Uchihashi, T & Suzuki, D (2019). Non-thermoresponsive decanano-sized domains in thermoresponsive hydrogel microspheres revealed by temperature-controlled high-speed atomic force microscopy. Angew Chem, Int Ed 58, 88098813.CrossRefGoogle ScholarPubMed
Niu, D & Tang, GH (2016). The effect of surface wettability on water vapor condensation in nanoscale. Sci Rep 6, 19192. doi: 10.1038/srep19192.CrossRefGoogle ScholarPubMed
Osorio-Blanco, ER, Bergueiro, J, Abali, BE, Ehrmann, S, Böttcher, C, Müller, AJ, Cuéllar-Camacho, JL & Calderón, M (2020). Effect of core nanostructure on the thermomechanical properties of soft nanoparticles. Chem Mater 32, 518528.CrossRefGoogle Scholar
Park, J, Park, H, Ercius, P, Pegoraro, AF, Xu, C, Kim, JW, Han, SH & Weitz, DA (2015). Direct observation of wet biological samples by graphene liquid cell transmission electron microscopy. Nano Lett 15, 47374744.CrossRefGoogle ScholarPubMed
Peckys, DB, Veith, GM, Joy, DC, & de Jonge, N (2009). Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLoS One 4, e8214.CrossRefGoogle Scholar
Press, WH, Teukolsky, SA, Vetterling, WT & Flannery, BP (1992). Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. New York, NY: Cambridge University Press.Google Scholar
Razza, N, Rizza, G, Coulon, PE, Didier, L, Fadda, GC, Voit, B, Synytska, A, Grützmacher, H & Sangermano, M (2018). Enabling the synthesis of homogeneous or Janus hairy nanoparticles through surface photoactivation. Nanoscale 10, 1449214498.CrossRefGoogle ScholarPubMed
Rehn, SM & Jones, MR (2018). New strategies for probing energy systems with in situ liquid-phase transmission electron microscopy. ACS Energy Lett 3, 12691278.CrossRefGoogle Scholar
Reimer, L & Kohl, H (2008). Transmission Electron Microscopy. New York, NY: Springer Science+Business Media, LLC.Google Scholar
Ross, FM (2015). Opportunities and challenges in liquid cell electron microscopy. Science 350, aaa9886.CrossRefGoogle ScholarPubMed
Ross, FM (2016). Liquid Cell Electron Microscopy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Schild, HG, Muthukumar, M & Tirrell, DA (1991). Cononsolvency in mixed aqueous solutions of poly(N-isopropylacrylamide). Macromolecules 24, 948952.CrossRefGoogle Scholar
Schneider, NM, Norton, MM, Mendel, BJ, Grogan, JM, Ross, FM & Bau, HH (2014). Electron–water interactions and implications for liquid cell electron microscopy. J Phys Chem C 118, 2237322382.CrossRefGoogle Scholar
Steinbrecht, RA & Zierold, K (eds.) (1987). Cryotechniques in Biological Electron Microscopy. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Stieger, M, Richtering, W, Pedersen, JS & Lindner, P (2004). Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloids. J Chem Phys 120, 61976206.CrossRefGoogle ScholarPubMed
Takata, S, Shibayama, M, Sasabe, R & Kawaguchi, H (2002). Preparation and structure characterization of hairy nanoparticles consisting of hydrophobic core and thermosensitive hairs. Polymer 44, 495501.CrossRefGoogle Scholar
Verch, A, Pfaff, M & De Jonge, N (2015). Exceptionally slow movement of gold nanoparticles at a solid/liquid interface investigated by scanning transmission electron microscopy. Langmuir 31( 25), 69566964.CrossRefGoogle Scholar
Vlassak, JJ & Nix, WD (1992). A new bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films. J Mater Res 7, 32423249.CrossRefGoogle Scholar
Wang, JH, Sagar, RP, Schmider, H & Smith, VH (1993). X-ray elastic and inelastic scattering factors for neutral atoms Z=2-92. At Data Nucl Data Tables 53, 233269.CrossRefGoogle Scholar
Williamson, MJ, Tromp, RM, Vereecken, PM, Hull, R & Ross, FM (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2, 532536.CrossRefGoogle ScholarPubMed
Woehl, TJ & Abellan, P (2017). Defining the radiation chemistry during liquid cell electron microscopy to enable visualization of nanomaterial growth and degradation dynamics. J Microsc 265, 135147.CrossRefGoogle ScholarPubMed
Woehl, TJ, Jungjohann, KL, Evans, JE, Arslan, I, Ristenpart, WD & Browning, ND (2013). Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy 127, 5363.CrossRefGoogle ScholarPubMed
Wu, J, Shan, H, Chen, W, Gu, X, Tao, P, Song, C, Shang, W & Deng, T (2016). In situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research. Adv Mater 28, 96869712.CrossRefGoogle ScholarPubMed
Yang, J, Alam, SB, Yu, L, Chan, E & Zheng, H (2019). Dynamic behavior of nanoscale liquids in graphene liquid cells revealed by in situ transmission electron microscopy. Micron 116, 2229.CrossRefGoogle ScholarPubMed
Zhang, H, Egerton, RF & Malac, M (2010). Local thickness measurement in TEM. Microsc Microanal 16, 67.CrossRefGoogle Scholar
Supplementary material: PDF

Azim et al. supplementary material

Azim et al. supplementary material

Download Azim et al. supplementary material(PDF)
PDF 368 KB