No CrossRef data available.
Article contents
Enhancing Electron Computational Ghost Imaging Using Artificial Neural Networks
Published online by Cambridge University Press: 22 July 2022
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
- Type
- On Demand - Electron Microscopy of Beam Sensitive Samples: The Trials and Tribulations of Electron-Beam Sample Interactions
- Information
- Copyright
- Copyright © Microscopy Society of America 2022
References
Padgett, M J, Aspden, R, Gibson, G, Edgar, M, and Spalding, G, Optics & Photonics News 27 (October 2016), p. 38-4510.1364/OPN.27.10.000038CrossRefGoogle Scholar
Shapiro, J H, PHYSICAL REVIEW A78, p. 061802(R) doi:10.1103/PhysRevA.78.061802CrossRefGoogle Scholar
Tavabi, A H, Migunov, V, Dwyer, C, Dunin-Borkowski, R E. and Pozzi, G, Ultramicroscopy 157 (2015), p. 57-64 doi: 10.1016/j.ultramic.2015.04.003CrossRefGoogle Scholar
Michael, A. Nielsen in “Neural Networks and Deep Learning”, ed. Determination Press, 2015 (accessed February 08, 2022)Google Scholar
Rotunno, E., Tavabi, A.H., Rosi, P., Frabboni, S., Tiemeijer, P., Dunin-Borkowski, R.E. and Grillo, V., Ultramicroscopy 228 (2021), p. 113338 doi:10.1016/j.ultramic.2021.113338CrossRefGoogle Scholar
You have
Access