Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-21T22:30:46.425Z Has data issue: false hasContentIssue false

Enabling a Paradigm Shift in CryoEM Sample Preparation with chameleon

Published online by Cambridge University Press:  30 July 2021

Michele C. Darrow
Affiliation:
SPT Labtech LTD., Melbourn Science Park, Hertfordshire, UK, United States
Tim Booth
Affiliation:
SPT Labtech LTD., Melbourn Science Park, Hertfordshire, UK, United States
John P. Moore
Affiliation:
SPT Labtech LTD., Melbourn Science Park, Hertfordshire, UK, United States
Klaus Doering
Affiliation:
SPT Labtech LTD., Melbourn Science Park, Hertfordshire, UK, United States
Paul Thaw
Affiliation:
SPT Labtech LTD., Melbourn Science Park, Hertfordshire, UK, United States
Russell S. King
Affiliation:
SPT Labtech LTD., Melbourn Science Park, Hertfordshire, UK, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
3D Structures: From Macromolecular Assemblies to Whole Cells (3DEM FIG)
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Carragher, B., Cheng, Y., Frost, A., Glaeser, R.M., Lander, G.C., Nogales, E., Wang, H.-W., Current outcomes when optimizing ‘standard’ sample preparation for single-particle cryo-EM Journal of Microscopy, 276(1), pp. 39-45.CrossRefGoogle Scholar
Darrow, M. C., Moore, J. P., Walker, R. J., Doering, K. and King, R. S. (2019) “Chameleon: Next Generation Sample Preparation for CryoEM based on Spotiton,” Microscopy and Microanalysis. Cambridge University Press, 25(S2), pp. 994–995.CrossRefGoogle Scholar
Dandey, V.P., Wei, H., Zhang, Z., Tan, Y.Z., Acharya, P., Eng, E.T., Rice, W.J., Kahn, P.A., Potter, C.S., Carragher, B., 2018. Spotiton: New Features and Applications. J Struct Biol 202, 161169.CrossRefGoogle ScholarPubMed
Wei, H., Dandey, V.P., Zhang, Z., Raczkowski, A., Rice, W.J., Carragher, B., Potter, C.S., 2018. Optimizing “self-wicking” nanowire grids. Journal of Structural Biology 202, 170174.CrossRefGoogle ScholarPubMed
Noble, Alex J., Wei, H., Dandey, V.P., Zhang, Z., Tan, Y.Z., Potter, C.S., Carragher, B., 2018. Reducing effects of particle adsorption to the air–water interface in cryo-EM. Nat Methods 15, 793795.CrossRefGoogle Scholar
Klebl, D.P., et al. , 2020. Need for speed: examining protein behavior during CryoEM grid preparation at different timescales. Structure, 28(11), pp. 1238-1248.CrossRefGoogle ScholarPubMed
Glaeser, R.M., 2018. PROTEINS, INTERFACES, AND CRYO-EM GRIDS. Curr Opin Colloid Interface Sci 34, 18.Google ScholarPubMed
Liu, Y., Zhou, K., Zhang, N., Wei, H., Tan, Y.Z., Zhang, Z., Carragher, B., Potter, C.S., D'Arcy, S. and Luger, K., 2020. FACT caught in the act of manipulating the nucleosome. Nature, 577(7790), pp. 426-431.CrossRefGoogle ScholarPubMed
Liang, W., Wei, H., Noble, A., Mo, S., Lee, D., Mancl, J., King, J.L., Pan, M., Koehler, C., Zhao, M. and Potter, C., 2020. Structural basis for the mechanisms of human presequence protease conformational switch and substrate recognition.Google Scholar
Huo, J., et al. , 2020. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nature structural & molecular biology, 27(9), pp. 846-854.Google ScholarPubMed