Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T19:50:04.311Z Has data issue: false hasContentIssue false

Electron Probe Microanalysis of Thin Films and Multilayers Using the Computer Program XFILM

Published online by Cambridge University Press:  24 December 2009

Xavier Llovet*
Affiliation:
Serveis Cientificotècnics, Universitat de Barcelona, Lluís Solé i Sabarís 1-3, 08028 Barcelona, Spain
Claude Merlet
Affiliation:
CNRS UMR 5243, Geosciences Montpellier, Université de Montpellier II, Sciences et Techniques du Languedoc, Pl. E. Bataillon, 34095 Montpellier Cedex 5, France
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

XFILM is a computer program for determining the thickness and composition of thin films on substrates and multilayers by electron probe microanalysis. In this study, we describe the X-ray emission model implemented in the latest version of XFILM and assess its reliability by comparing measured and calculated k-ratios from thin-film samples available in the literature. We present and discuss examples of applications of XFILM that illustrate the capabilities of the program.

Type
Thick and Thin Films: Standards and Analysis
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. (1974). Handbook of Mathematical Functions. New York: Dover.Google Scholar
Bastin, G.F. (2006). Electron probe microanalysis of thin films. Proceedings of the 7th Regional Workshop (EMAS 2006) on Electron Probe Microanalysis Today—Practical Aspects, Karlsruhe, Germany, May 13–16, 2006, pp. 33–57.Google Scholar
Bastin, G.F., Dijkstra, J.M., Heijligers, H.J.M. & Klepper, D. (1993). In depth profiling with the electron probe microanalyzer. Microbeam Anal 2, 2943.Google Scholar
Bastin, G.F. & Heijligers, H.J.M. (2000a). A systematic database of thin-film measurements by EPMA—Part I—Aluminum films. X-Ray Spectrom 29, 212238.Google Scholar
Bastin, G.F. & Heijligers, H.J.M. (2000b). A systematic database of thin-film measurements by EPMA—Part II—Palladium films. X-Ray Spectrom 29, 373397.3.0.CO;2-S>CrossRefGoogle Scholar
Benhayoune, H. (1996). Characteristic and continuous fluorescence correction for electron probe microanalysis of thin coatings at oblique incidence. J Anal Atom Spectrom 11, 11131117.CrossRefGoogle Scholar
Campos, C.S., Vasconcellos, M.A.Z., Llovet, X. & Salvat, F. (2004). Thickness determination of ultra-thin films on Si substrates by EPMA. Microchim Acta 145, 1317.CrossRefGoogle Scholar
Castaing, R. (1951). PhD. Thesis, University of Paris, Publication ONERA No. 55.Google Scholar
Castaing, R. & Hénoc, J. (1966). Repartition en profondeur du rayonnement caracteristique. In Optique des Rayons X et Microanalyse, Castaing, R., Descamps, P. & Philibert, J. (Eds.), pp. 120127. Paris: Hermann.Google Scholar
Chan, A. & Brown, J.D. (1997). Simulation and modelling of thin-film φ(ρz) curves for electron probe microanalysis. X-Ray Spectrom 26, 279290.3.0.CO;2-A>CrossRefGoogle Scholar
Heinrich, K.F.J. (1987). Mass absorption coefficients for electron probe microanalysis. Proceedings of the 11th ICXOM, Brown, J.D. & Packwood, R.H. (Eds.), pp. 67119. London: University of Western Ontario.Google Scholar
Heluani, S.P. & Hoffmann, C. (2006). Invariant embedding approach to microanalysis: Procedure to thin-film characterization. J Appl Phys 99, 044909.Google Scholar
Henke, P., Lee, P., Tanaka, T., Shimabukuro, R. & Fujikawa, B. (1982). Low-energy X ray interaction coefficients: Photoabsorption, scattering, and reflection. At Data Nucl Data Tables 27, 1144.CrossRefGoogle Scholar
Hunger, H.J. (1988). Thin-film analysis by X-ray microanalysis using Gaussian Φ(ρz) curves. Scanning 10, 6572.CrossRefGoogle Scholar
Hunger, H.J. & Rogaschewski, S. (1986). A study of electron backscattering of thin films on substrates. Scanning 8, 257263.CrossRefGoogle Scholar
Kyser, D.F. & Murata, K. (1974). Quantitative electron-microprobe analysis of thin films on substrates. IBM J Res Dev 18, 352363.CrossRefGoogle Scholar
Llovet, X. & Merlet, C. (2009). Electron probe microanalysis of thin films and multilayers using the XFILM computer code. Proceedings of Microscopy and Microanalysis 2009, pp. 432433. New York: Cambridge University Press.Google Scholar
Llovet, X., Merlet, C. & Salvat, F. (1998). Surface ionization of thin films on substrates: Measurement and simulation. Mikrochim Acta Suppl 15, 155161.Google Scholar
Mackenzie, A.P. (1993). Recent progress in electron probe microanalysis. Rep Prog Phys 56, 557604.CrossRefGoogle Scholar
Merlet, C. (1992). Quantitative electron probe microanalysis: New accurate Φ(ρz) description. Mikrochim Acta Suppl 12, 107115.CrossRefGoogle Scholar
Merlet, C. (1994). An accurate computer correction program for quantitative electron probe microanalysis. Mikrochim Acta 114/115, 363376.CrossRefGoogle Scholar
Merlet, C. (1995). A new quantitative procedure for stratified samples in EPMA. Proceedings of the 29th Annual Conference of the Microbeam Analysis Society, Etz, E.S. (Ed.), pp. 203204. New York: VHC.Google Scholar
Merlet, C., Llovet, X. & Fernández–Varea, J.M. (2006). Absolute K-shell ionization cross sections and Lα and Lβ1 X-ray production cross sections of Ga and As by 1.5–39-keV electrons. Phys Rev A 73, 062719.CrossRefGoogle Scholar
Merlet, C., Llovet, X. & Salvat, F. (2004). Measurements of the surface ionization in multilayered specimens X-Ray Spectrom 33, 376386.CrossRefGoogle Scholar
Merlet, C., Llovet, X. & Salvat, F. (2008). Near-threshold absolute M-shell X-ray production cross sections of Au and Bi by electron impact. Phys Rev A 78, 022704.CrossRefGoogle Scholar
Murata, K. & Sugiyama, K. (1989). Quantitative electron microprobe analysis of ultrathin gold films on substrates. J Appl Phys 54, 11101114.CrossRefGoogle Scholar
Packwood, R.H. & Rémond, G. (1992). The interpretation of X-ray and electron signals generated in thin or layer targets. Scanning Microsc 6, 367384.Google Scholar
Pouchou, J.L. (2002). X-ray microanalysis of thin surface films and coatings. Mikrochim Acta 138, 133152.CrossRefGoogle Scholar
Pouchou, J.L. & Pichoir, F. (1984). A new model for quantitative X-ray microanalysis. 2. Application to in-depth analysis of heterogeneous samples. Rech Aerosp 5, 349367.Google Scholar
Pouchou, J.L. & Pichoir, F. (1990). Surface-film X-ray microanalysis. Scanning 12, 212224.CrossRefGoogle Scholar
Pouchou, J.L. & Pichoir, F. (1991). Quantitative analysis of homogeneous or stratified microvolumes applying the model PAP. In Electron Probe Quantitation, Heinrich, K.F.J. & Newbury, D.E. (Ed.), pp. 3175. New York: Plenum Press.CrossRefGoogle Scholar
Pouchou, J.L. & Pichoir, F. (1993). Electron probe X-ray microanalysis applied to thin surface films and stratified specimens. Scanning Microsc Suppl 7, 167189.Google Scholar
Reed, S.B.J. (1993). Electron Microprobe Analysis. Cambridge, UK: Cambridge University Press.Google Scholar
Reuter, W., Kuptsis, J.D., Lurio, A. & Kyser, D.F. (1978). X-ray production range in solids by 2–15 keV electrons. J Phys D: Appl Phys 11, 26332642.CrossRefGoogle Scholar
Waldo, R.A. (1988). An iteration procedure to calculate film composition and thicknesses in electron-probe microanalysis. In Microbeam Analysis, Newbury, D.E. (Ed.), pp. 310314. San Francisco: San Francisco Press.Google Scholar
Willich, P. (1992). EPMA—A versatile technique for the characterisation of thin films and layered structures. Mikrochim Acta Suppl 12, 118.CrossRefGoogle Scholar