Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-30T06:28:46.340Z Has data issue: false hasContentIssue false

Electron Probe Microanalysis of REE in Eudialyte Group Minerals: Challenges and Solutions

Published online by Cambridge University Press:  27 August 2015

Petya Atanasova*
Affiliation:
Helmholtz-Zentrum Dresden—Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Halsbruecker Str. 34, 09599 Freiberg, Saxony, Germany
Joachim Krause
Affiliation:
Helmholtz-Zentrum Dresden—Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Halsbruecker Str. 34, 09599 Freiberg, Saxony, Germany
Robert Möckel
Affiliation:
Helmholtz-Zentrum Dresden—Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Halsbruecker Str. 34, 09599 Freiberg, Saxony, Germany
Inga Osbahr
Affiliation:
Helmholtz-Zentrum Dresden—Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Halsbruecker Str. 34, 09599 Freiberg, Saxony, Germany
Jens Gutzmer
Affiliation:
Helmholtz-Zentrum Dresden—Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Halsbruecker Str. 34, 09599 Freiberg, Saxony, Germany Department of Mineralogy, Technical University Bergakademie Freiberg, Brennhausgasse 14, D-09596 Freiberg, Saxony, Germany
*
*Corresponding author. [email protected]
Get access

Abstract

Accurate quantification of the chemical composition of eudialyte group minerals (EGM) with the electron probe microanalyzer is complicated by both mineralogical and X-ray-specific challenges. These include structural and chemical variability, mutual interferences of X-ray lines, in particular of the rare earth elements, diffusive volatility of light anions and cations, and instability of EGM under the electron beam. A novel analytical approach has been developed to overcome these analytical challenges. The effect of diffusive volatility and beam damage is shown to be minimal when a square of 20×20 µm is scanned with a beam diameter of 6 µm at the fastest possible speed, while measuring elements critical to electron beam exposure early in the measurement sequence. Appropriate reference materials are selected for calibration considering their volatile content and composition, and supplementary offline overlap correction is performed using individual calibration factors. Preliminary results indicate good agreement with data from laser ablation inductively coupled plasma mass spectrometry demonstrating that a quantitative mineral chemical analysis of EGM by electron probe microanalysis is possible once all the parameters mentioned above are accounted for.

Type
Research Article
Copyright
© Microscopy Society of America 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This article is intended for the Special Issue from the EMAS 2014 Workshop on “Electron Probe Microanalysis of Materials Today – Rare and Noble Elements: from Ore Deposits to High-tech Materials”.

References

Ahmed, M. & MacKenzie, W.S. (1978). Preliminary report on the synthesis and stability of eudialyte. In Progress in Experimental Petrology. Fourth Progress Report 1975–1978, MacKenzie, W.S. (Ed.), 11, pp. 4749. Series D, Manchester, NERC.Google Scholar
Amli, R. & Griffin, W.L. (1975). Microprobe analysis of REE minerals using empirical correction factors. Am Mineral 60, 599606.Google Scholar
Andersen, T., Erambert, M., Larsen, A.O. & Selbekk, R.S. (2010). Petrology of nepheline syenite pegmatites in the Oslo rift, Norway: Zirconium silicate mineral assemblages as indicators of alkalinity and volatile fugacity in mildly agpaitic magma. J Petrol 51(11), 23032325.10.1093/petrology/egq05810.1093/petrology/egq058Google Scholar
Atanasova, P., Krause, J. & Gutzmer, J. (2013). Mineralogical characterization of REE mineralization in Norra Kärr alkaline complex, Sweden, 12th SGA Biannual Meeting, 12–15 August 2013, Uppsala, Sweden, pp. 298–301.Google Scholar
Bøggild, O.B. (1953). The mineralogy of Greenland. Meddelelser dm Grønland 149(3), 1442.Google Scholar
Chakrabarty, A., Pruseth, K.L. & Sen, A.K. (2012). Compositions and petrogenetic significance of the eudialyte group minerals from Sushina, Purulia, West Bengal. J Geol Soc India 79, 449459.10.1007/s12594-012-0069-010.1007/s12594-012-0069-0Google Scholar
Couch, S., Harford, C.L., Sparks, R.S.J. & Carroll, M.R. (2003). Experimental constraints on the conditions of formation of highly calcic plagioclase microlites at the Soufriéte Hills Volcano, Montserrat. J Petrol 44(8), 14551475.10.1093/petrology/44.8.145510.1093/petrology/44.8.1455Google Scholar
Coulson, I.M. & Chambers, A.D. (1996). Patterns of zonation in rare-earth-bearing minerals in nepheline syenites of the North Qôroq Center, South Greenland. Canad Mineral 34, 11631178.Google Scholar
Jarosewich, E. & Boatner, L. (1991). Rare-earth element reference samples for electron microprobe analysis. Geostandards Newsletter 15(2), 307309.10.1111/j.1751-908X.1991.tb00115.xGoogle Scholar
Jochum, K.P., Stoll, B., Herwig, K. & Willbold, M. (2006). Improvement of in situ Pb isotope analysis by LA-ICP-MS using a 193 nm Nd:YAG laser. J Anal At Spectrom 21, 666675.10.1039/b603890e10.1039/b603890eGoogle Scholar
Jochum, K.P., Stoll, B., Herwig, K. & Willbold, M. (2007). Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd:YAG laser and matrix matched calibration. J Anal At Spectrom 22, 112121.10.1039/B609547J10.1039/B609547JGoogle Scholar
Johnsen, O. & Gault, R.A. (1997). Chemical variation in eudialyte. Neues Jahrbuch der Mineralogie Abhandlungen 171, 215237.Google Scholar
Johnsen, O., Ferraris, G., Gault, R.A., Grice, J., Kampf, A.R. & Pekov, I.V. (2003). The nomenclature of eudialyte-group minerals. Canad Mineral 41, 785794.10.2113/gscanmin.41.3.78510.2113/gscanmin.41.3.785Google Scholar
Krause, J., Rudolph, M., Atanasova, P. & Gutzmer, J. (2016). Effects of electron beam irradiation on eudialyte group minerals. Manuscript in preparation.Google Scholar
Mitchell, R.H. & Liferovich, R.P. (2006). Subsolidus deuteric/hydrothermal alteration of eudialyte in lujavrite from the Pilansberg alkaline complex, South Africa. Lithos 91, 352372.10.1016/j.lithos.2006.03.02510.1016/j.lithos.2006.03.025Google Scholar
Morgan, G.B. VI & London, D. (1996). Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses. Am Mineral 81, 11761185.10.2138/am-1996-9-1016Google Scholar
Nielsen, C.H. & Sigurdsson, H. (1981). Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses. Am Mineral 66, 547552.Google Scholar
Olivo, G.R. & Williams-Jones, A.E. (1999). Hydrothermal REE-rich eudialyte from the Pilanesberg complex, South Africa. Canad Mineral 37, 653663.Google Scholar
Osbahr, I., Krause, J., Bachmann, K. & Gutzmer, J. (2015). Efficient and accurate identification of platinum group minerals by a combination of mineral liberation analysis and electron probe microanalyser with a new approach of offline overlap correction of platinum group elements concentrations. Microsc Microanal. (this issue).AMBIGUOUS (166 citations)10.1017/S1431927615000719Google Scholar
Palme, H. & O’Neill, H.S.C. (2003). Cosmochemical estimates of mantle composition. In The Mantle and Core, Carlson, R.W. (Eds.), vol. 2: Treatise on Geochemistry, Holland, H.D. & Turekian, K.K., pp. 138. Oxford: Elsevier-Pergamon.Google Scholar
Pfaff, K., Krumrei, T., Marks, M., Wenzel, T., Rudolf, T. & Markl, G. (2008). Chemical and physical evolution of the ‘lower layered sequence’ from the nepheline syenitic Ilímaussaq intrusion, South Greenland: Implications for the origin of magmatic layering in peralkaline felsic liquids. Lithos 106, 280296.10.1016/j.lithos.2008.07.01810.1016/j.lithos.2008.07.018Google Scholar
Pfaff, K., Wenzel, T., Schilling, J., Marks, M.A.W. & Markl, G. (2010). A fast and easy-to-use approach to cation site assignment for eudialyte-group minerals. Neues Jahrbuch der Mineralogie Abhandlungen 171, 215237.Google Scholar
Pyle, J.M. (2001). Distribution of selected trace elements in pelitic metamorphic rocks: pressure, temperature, mineral assemblage and reaction-history controls. PhD dissertation, Rensselaer Polytechnic Institute, Troy, NY.Google Scholar
Pyle, J.M., Spear, F.S. & Wark, D.A. (2002). Electron microprobe analysis of REE in apatite, monazite and xenotime: Protocols and pitfalls. In Reviews in Mineralogy and Geochemistry, Kohn, M.L., Rakovan, J. & Hughes, J.M. (Eds.), vol. 48: Phosphates, pp. 337362. Washington, DC, Mineralogical Society of America.Google Scholar
Rastsvetaeva, R.A. (2007). Structural mineralogy of the eudialyte group: A review. Crystallogr Rep 52(1), 4764.10.1134/S106377450701006310.1134/S1063774507010063Google Scholar
Reed, S.J.B. & Buckley, A. (1996). Virtual WDS. Microchimica Acta 13, 479483.Google Scholar
Roeder, P.L. (1985). Electron-microprobe analysis of minerals for rare-earth elements: Use of calculated peak-overlap correction. Canad Mineral 23, 263271.Google Scholar
Schilling, J., Marks, M.A.W., Wenzel, T. & Markl, G. (2009). Reconstruction of magmatic to subsolidus processes in an agpaitic system using eudialyte textures and composition: A case study from Tamazeght, Morocco. Canad Mineral 47, 351365.10.3749/canmin.47.2.35110.3749/canmin.47.2.351Google Scholar
Schilling, J., Wu, F.Y., McCammon, C., Wenzel, T., Marks, M.A.W., Pfaff, K., Jacob, D.E. & Markl, G. (2011). The compositional variability of eudialyte-group minerals. Mineral Mag 75(1), 87115.10.1180/minmag.2011.075.1.8710.1180/minmag.2011.075.1.87Google Scholar
Sjöqvist, A.S.L., Cornell, D.H., Andersen, T., Erambert, M., Ek, M. & Leijd, M. (2013). Three compositional varieties of rare-earth element ore: Eudialyte-group minerals from the Norra Kärr alkaline complex, Southern Sweden. Minerals 3, 94120.10.3390/min301009410.3390/min3010094Google Scholar
Stormer, J.C. Jr., Pierson, M.L. & Tacker, R.C. (1993). Variations of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Am Mineral 78, 641648.Google Scholar
Supplementary material: Image

Atanasova supplementary material

Supplementary Figure 1

Download Atanasova supplementary material(Image)
Image 6.9 MB
Supplementary material: Image

Atanasova supplementary material

Supplementary Figure 2

Download Atanasova supplementary material(Image)
Image 7 MB
Supplementary material: Image

Atanasova supplementary material

Supplementary Figure 3

Download Atanasova supplementary material(Image)
Image 6.8 MB
Supplementary material: File

Atanasova supplementary material

Atanasova supplementary material 1

Download Atanasova supplementary material(File)
File 2.7 MB
Supplementary material: File

Atanasova supplementary material

Atanasova supplementary material 2

Download Atanasova supplementary material(File)
File 77.8 KB
Supplementary material: Image

Atanasova supplementary material

Figure

Download Atanasova supplementary material(Image)
Image 18.5 MB