No CrossRef data available.
Article contents
Electron Microscopy Study of Stoichiometric and Non-Stoichiometric Titania
Published online by Cambridge University Press: 02 July 2020
Extract
It is currently well recognized that oxides are able to accommodate deviations from stoichiometry (1) and great advances in this understanding have been achieved by using transmission electron microscopy (TEM), particularly through lattice imaging and electron diffraction techniques (2). The physical properties of non-stoichiometric oxides are strongly influenced by their exact composition and for this reason they represent a class of materials with increasing and novel properties that are put to use in, for example, oxygen sensors and high-Tc superconductors. On the other hand, in electroceramic materials, such as TiO2, grain boundary structure and chemistry are important to be characterized in detail since these variables are responsible for the electric activity.
Rutile (TiO2) can accommodate relatively large deviations from stoichiometry (TiOx with 2.0≥x≤ 1.75) by the crystallographic shear (CS) mechanism (1). The formation of CS planes is effectively a two-step process which involves the ordering of oxygen vacancies on a crystallographic plane and on their elimination by a shear of the lattice.
- Type
- Atomic Structure and Mechanisms at Interfaces in Materials
- Information
- Microscopy and Microanalysis , Volume 3 , Issue S2: Proceedings: Microscopy & Microanalysis '97, Microscopy Society of America 55th Annual Meeting, Microbeam Analysis Society 31st Annual Meeting, Histochemical Society 48th Annual Meeting, Cleveland, Ohio, August 10-14, 1997 , August 1997 , pp. 669 - 670
- Copyright
- Copyright © Microscopy Society of America 1997