Article contents
Electron Beam-Induced Carbon Erosion and the Impact on Electron Probe Microanalysis
Published online by Cambridge University Press: 16 November 2018
Abstract
Electron beam-induced carbon contamination is a balance between simultaneous deposition and erosion processes. Net erosion rates for a 25 nA 3 kV beam can reduce a 5 nm C coating by 20% in 60 s. Measurements were made on C-coated Bi substrates, with coating thicknesses of 5–20 nm, over a range of analysis conditions. Erosion showed a step-like increase with increasing electron flux density. Both the erosion rate and its rate of change increase with decreasing accelerating voltage. As the flux density decreases the rate of change increases more rapidly with decreasing voltage. Time-dependent intensity (TDI) measurements can be used to correct for errors, in both coating and substrate quantifications, resulting from carbon erosion. Uncorrected analyses showed increasing errors in coating thickness with decreasing accelerating voltage. Although the erosion rate was found to be independent of coating thickness this produces an increasing absolute error with decreasing starting thickness, ranging from 1.5% for a 20 nm C coating on Bi at 15 kV to 14% for a 5 nm coating at 3 kV. Errors in Bi Mα measurement are <1% at 5 kV or above but increase rapidly below this, both with decreasing voltage and increasing coating thickness to 20% for a 20 nm coated sample at 3 kV.
- Type
- Materials Science Applications
- Information
- Copyright
- © Microscopy Society of America 2018
Footnotes
Cite this article: Matthews MB, Kearns SL and Buse B (2018) Electron Beam-Induced Carbon Erosion and the Impact on Electron Probe Microanalysis. Microsc Microanal. 24(6), 612–622. doi: 10.1017/S1431927618015398
References
- 4
- Cited by