No CrossRef data available.
Article contents
Effect Of Capping Layer During Annealing of Low-Dose Lowenergy Simox Materials
Published online by Cambridge University Press: 02 July 2020
Extract
Ultra-thin Silicon-On-Insulator (SOI) materials are becoming increasingly attractive for fabrication of ultra-large scale integrated (ULSI) devices due to their performance, speed, and power reduction advantages [1]. In SIMOX (Separation by IMplanted OXygen) materials, extensive damage can be repaired by high-temperature annealing in an argon ambient. A small percentage of oxygen is added to give a sufficient oxygen partial pressure to prevent formation of silicon monoxide lumps and subsequent pits [2]. Capping the sample surface to prevent external thermal oxidation during annealing is important to preserve the thickness of the top silicon layer. This is particularly critical for the ultra-thin SIMOX produced by the low-dose low-energy process. However, the surface capping also affects the formation of the buried oxide (BOX). To study this effect, two sets of samples implanted at the same doses of 1.5, 2.0, 2.5, and 3.0x 1017O+ /cm2 at 65keV were annealed with or without protective cap on the sample surface.
- Type
- Semiconductors
- Information
- Microscopy and Microanalysis , Volume 6 , Issue S2: Proceedings: Microscopy & Microanalysis 2000, Microscopy Society of America 58th Annual Meeting, Microbeam Analysis Society 34th Annual Meeting, Microscopical Society of Canada/Societe de Microscopie de Canada 27th Annual Meeting, Philadelphia, Pennsylvania August 13-17, 2000 , August 2000 , pp. 1090 - 1091
- Copyright
- Copyright © Microscopy Society of America