Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T17:19:08.766Z Has data issue: false hasContentIssue false

EELSpecNet: Deep Convolutional Neural Network Solution for Electron Energy Loss Spectroscopy Deconvolution

Published online by Cambridge University Press:  30 July 2021

S. Shayan Mousavi M
Affiliation:
McMaster University, Canada
Alexandre Pofelski
Affiliation:
McMaster University, Canada
Gianluigi Botton
Affiliation:
Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada, Canada

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Full System and Workflow Automation for Enabling Big Data and Machine Learning in Electron Microscopy
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Krivanek, OL, Lovejoy, TC, Dellby, N, Aoki, T, Carpenter, RW, Rez, P, et al. Vibrational spectroscopy in the electron microscope. Nature. 2014 Oct;514(7521):209–12.CrossRefGoogle ScholarPubMed
Egerton, RF, Williams, BG, Sparrow, TG. Fourier deconvolution of electron energy-loss spectra. Proceedings of the Royal Society of London A Mathematical and Physical Sciences. 1985;398(1815):395404.Google Scholar
Wang, F, Egerton, R, Malac, M. Fourier-ratio deconvolution techniques for electron energy-loss spectroscopy (EELS). Ultramicroscopy. 2009;109(10):1245–9.Google Scholar
Bellido, EP, Rossouw, D, Botton, GA. Toward 10 meV electron energy-loss spectroscopy resolution for plasmonics. Microsc Microanal. 2014;20(3):767–78.CrossRefGoogle ScholarPubMed
Zhu, H, Qiao, Y, Xu, G, Deng, L, Yu, Y-F. Dspnet: A lightweight dilated convolution neural networks for spectral deconvolution with self-paced learning. IEEE Transactions on Industrial Informatics. 2019;16(12):7392–401.CrossRefGoogle Scholar
Richardson, WH. Bayesian-based iterative method of image restoration. JoSA. 1972;62(1):55–9.CrossRefGoogle Scholar
Lucy, LB. An iterative technique for the rectification of observed distributions. The astronomical journal. 1974;79:745.Google Scholar
Chatzidakis, M, Botton, GA. Towards calibration-invariant spectroscopy using deep learning. Scientific reports. 2019;9(1):110.Google ScholarPubMed
Falk, T, Mai, D, Bensch, R, Çiçek, Ö, Abdulkadir, A, Marrakchi, Y, et al. U-Net: deep learning for cell counting, detection, and morphometry. Nature Methods. 2019 Jan;16(1):6770.Google ScholarPubMed
We are grateful to the Natural Sciences and Engineering Research Council for supporting this work.Google Scholar