Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T04:06:55.729Z Has data issue: false hasContentIssue false

Direct Observation of Cationic Ordering in Double Perovskite Sr2FeReO6 Crystals

Published online by Cambridge University Press:  06 August 2013

Si-Young Choi*
Affiliation:
Advanced Characterization and Analysis Group, Korea Institute of Materials Science, Changwon 641-831, Republic of Korea
Jong Bong Lim
Affiliation:
Nano-Functional Materials Group, Korea Institute of Materials Science, Changwon 641-831, Republic of Korea
Yuichi Ikuhara
Affiliation:
Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656, Japan
Danilo Suvorov
Affiliation:
Department of Advanced Materials, Jozef Stefan Institute, Ljubljana SI-1000, Slovenia
Jae-Ho Jeon
Affiliation:
Nano-Functional Materials Group, Korea Institute of Materials Science, Changwon 641-831, Republic of Korea
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Two kinds of Sr2FeReO6 (SFRO) samples, pristine SFRO and Re-excess SFRO, were prepared and we visualized the local atomic structure in terms of cationic ordering in the prepared SFRO samples via high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM). HAADF-STEM results demonstrated the high degree of cationic ordering maintains in both the pristine SFRO and Re-excess SFRO samples. On the other hand, defective structures such as antiphase boundary and Re-deficient phase were observed dominantly in the pristine SFRO, and thus the poor magnetic property in the pristine SFRO is attributed to those defective structures related with the frustrated Fe/Re ordering.

Type
Research Article
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balcells, L.I., Navarro, J., Bibes, M., Roig, A., Martinez, B. & Fontcuberta, J. (2001). Cationic ordering control of magnetization in Sr2FeMoO6 double perovskite. Appl Phys Lett 78(6), 781783.Google Scholar
Batson, P.E., Dellby, N. & Krivanek, O.L. (2002). Sub-ångstrom resolution using aberration corrected electron optics. Nature 418(6898), 617620.10.1038/nature00972Google Scholar
Choi, S.-Y., Chung, S.-Y., Yamamoto, T. & Ikuhara, Y. (2009). Direct determination of dopant site selectivity in ordered perovskite CaCu3Ti4O12 polycrystals by aberration-corrected STEM. Adv Mater 21(8), 885889.Google Scholar
Chung, S.-Y., Choi, S.-Y., Yamamoto, T. & Ikuhara, Y. (2009). Orientation-dependent arrangement of antisite defects in lithium iron(II) phosphate crystals. Angew Chem Int Ed 48(3), 543546.Google Scholar
Falcon, H., Barbero, J.A., Alonso, J.A., Martinez-Lope, M.J. & Fierro, J.L.G. (2002). SrFeO3-δ perovskite oxides: Chemical features and performance for methane combustion. Chem Mater 14(5), 23252333.Google Scholar
Fang, Z., Terakura, K. & Kanamori, J. (2001). Strong ferromagnetism and weak antiferromagnetism in double perovskites: Sr2FeMO6 (M = Mo, W, and Re). Phys Rev B 63(18), 180407-1–4.10.1103/PhysRevB.63.180407Google Scholar
García-Hernádez, M., Martínez, J.L., Martínez-Loe, M.J., Casais, M.T. & Alonso, J.A. (2001). Finding universal correlations between cationic disorder and low field magnetoresistance in FeMo double perovskite series. Phy Rev Lett 86(11), 24432446.Google Scholar
Haider, M., Uhlemann, S., Schwan, E., Kabius, B., Rose, H. & Urban, K. (1998). Electron microscopy image enhanced. Nature 392(667B), 768769.10.1038/33823Google Scholar
Jia, C.L., Mi, S.-B., Urban, K., Vrejoiu, I., Alexe, M. & Hesse, D. (2008). Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat Mater 7(1), 5761.Google Scholar
Kobayashi, K.I., Kimura, T., Sawada, H., Terakura, K. & Tokura, Y. (1998). Room temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395(15), 677680.Google Scholar
Lindén, J., Yamamoto, T., Karppinen, M., Yamauchi, H. & Pietari, T. (2000). Evidence for valence fluctuation of Fe in Sr2FeMoO6-w double perovskite. Appl Phys Lett 76(20), 29252927.Google Scholar
Mathi Jaya, S., Jagadish, R., Rao, R.S. & Asokamani, R. (1991). Electronic structure and magnetism of SrFeO3 and SrCoO3. Phys Rev B 43(16), 1327413279.Google Scholar
Nakamura, S. & Oikawa, K. (2003). Precise structure analysis consistent with Mössbauer quadrupole effect: A case of the ordered double perovskites Sr2FeMO6 (M = Mo and Re). J Phys Soc Jpn 72(12), 31233127.10.1143/JPSJ.72.3123Google Scholar
Navarro, J., Balcells, L.I., Sandiumenge, F., Bibes, M., Roig, A., Martinez, B. & Fontcuberta, J. (2001). Antisite defects and magnetoresistance in Sr2FeMoO6 double perovskite. J Phys: Condens Matter 13(37), 84818488.Google Scholar
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H. Jr. & Pennycook, S.J. (2004). Direct sub-angstrom imaging of a crystal lattice. Science 305(5691), 1741.Google Scholar
Yin, H.Q., Zhou, J.-S., Dass, R., Zhou, J.-P., McDevitt, J.T. & Goodenough, J.B. (2000). Grain-boundary room-temperature low-field magnetoresistance in Sr2FeMoO6 films. J Appl Phys 87(9), 67616763.Google Scholar
Zajac, D., Sikora, M., Prochazka, V., Borowiec, M., Stepien, J., Kapusta, C., Riedi, P.C., Marquina, C., De Teresa, J.M. & Ibarra, M.R. (2007). Local magnetic and electronic properties of the A2FeM′O6 (A = Ba, Sr, Ca, M′ = Mo, Re) double perovskites. Acta Physica Polonica 111(6), 797820.Google Scholar