Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-31T23:31:36.540Z Has data issue: false hasContentIssue false

Differential Resin-Dentin Bonds Created after Caries Removal with Polymer Burs

Published online by Cambridge University Press:  03 May 2012

Manuel Toledano*
Affiliation:
University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Inmaculada Cabello
Affiliation:
University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Monica Yamauti
Affiliation:
University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Raquel Osorio
Affiliation:
University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

The objective of this article was to investigate the effect of carbide and polymer burs caries removal methods on the bond strength of different adhesives to dentin. Resin restorations were performed in sound and caries-affected dentin, after using polymer or carbide burs and bonding with four different adhesive (Single bond, SB; Clearfil SE bond, SEB; FL-Bond II, FLB; and Fuji II-LC, FUJI). Microtensile bond strength (MTBS) was measured. Data were analyzed with ANOVA and Student-Newman-Keuls tests. Debonded surfaces were observed by scanning electron microscopy. Bonded interfaces were examined using light microscopy (Masson's trichrome staining). In sound dentin, MTBS was similar for SEB and SB, and higher than that of FLB and FUJI. Bond strength to carbide bur prepared dentin was similar for SB, SEB, and FLB; FUJI presented the lowest. SB applied on polymer bur excavated dentin presented similar values to those of the carbide bur group; MTBS attained by SEB, FLB, and FUJI decreased when bonding to dentin treated with polymer burs; FUJI yielded pretesting failures in all specimens. Polymer burs created a thick smear layer that was not infiltrated by tested self-etching agents. The bonding effectiveness of self-etching and glass-ionomer-like adhesives to dentin decreased when polymer burs were used.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banerjee, A., Kidd, E.A.M. & Watson, T.F. (2000). Dentin caries excavation: A review of current clinical techniques. Br Dent J 188, 476482.CrossRefGoogle ScholarPubMed
Boston, D.W. (2003). New device for selective dentin caries removal. Quintessence Int 34, 678685.Google ScholarPubMed
Cardoso, M.V., Delmé, K.I., Mine, A., Neves, A.A., Coutinho, E., De Moor, R.J. & Van Meerbeek, B. (2010). Towards a better understanding of the adhesion mechanism of resin-modified glass-ionomers by bonding to differently prepared dentin. J Dent 38, 921929.CrossRefGoogle ScholarPubMed
Celiberti, P., Francescut, P. & Lussi, A. (2006). Performance of four dentine excavation methods in deciduous teeth. Caries Res 40, 117123.CrossRefGoogle ScholarPubMed
Coutinho, E., Yoshida, Y., Inoue, S., Fukuda, R., Snauwaert, J., Nakayama, Y., De Munck, J., Lambrechts, P., Suzuki, K. & Van Meerbeek, B. (2007). Gel phase formation at resin-modified glass-ionomer/tooth interfaces. J Dent Res 86, 656661.CrossRefGoogle ScholarPubMed
Dias, W.R., Pereira, P.N. & Swift, E.J. Jr. (2004). Effect of bur type on microtensile bond strengths of self-etching systems to human dentin. J Adhes Dent 6, 195203.Google ScholarPubMed
Fagundes, T., Toledano, M., Navarro, M.F.L. & Osorio, R. (2009). Resistance to degradation of resin-modified glass-ionomer cements dentine bonds. J Dent 5, 342347.CrossRefGoogle Scholar
Featherstone, J.D.B. (2008). Dental caries: A dynamic disease process. Aust Dent J 53, 286291.CrossRefGoogle ScholarPubMed
Fusayama, T., Okuse, K. & Hosoda, H. (1966). Relationship between hardness, discoloration, and microbial invasion in carious dentin. J Dent Res 45, 10331046.CrossRefGoogle ScholarPubMed
Haj-Ali, R., Walker, M., Williams, K., Wang, Y. & Spencer, P. (2006). Histomorphologic characterization of noncarious and caries-affected dentin/adhesive interfaces. J Prosthodont 15, 8288.CrossRefGoogle ScholarPubMed
Kidd, E.A., Joyston-Bechal, S. & Beighton, D. (1993). Microbiological validation of assessments of caries activity during cavity preparation. Caries Res 27, 402408.CrossRefGoogle ScholarPubMed
Kuboki, Y., Ohgushi, K. & Fusayama, T. (1977). Collagen biochemistry of the two layers of carious dentin. J Dent Res 56, 12331237.CrossRefGoogle ScholarPubMed
Marshall, G.W. Jr., Chang, Y.J., Gansky, S.A. & Marshall, S.J. (2001). Demineralization of caries-affected transparent dentin by citric acid: An atomic force microscopy study. Dent Mater 17, 4552.CrossRefGoogle ScholarPubMed
Marshall, G.W. Jr., Marshall, S.J., Kinney, J.H. & Balooch, M. (1997). The dentin substrate: Structure and properties. J Dent 25, 441458.CrossRefGoogle ScholarPubMed
Meller, C., Welk, A., Zellgowski, T. & Splieth, C. (2007). Comparison of dentin caries excavation with polymer and conventional tungsten carbide burs. Quintessence Int 38, 565569Google ScholarPubMed
Monticelli, F., Osorio, R., Mazzitelli, C., Ferrari, M. & Toledano, M. (2008). Limited decalcification/diffusion of self-adhesive cements into dentin. J Dent Res 87, 974979.CrossRefGoogle ScholarPubMed
Moszner, N., Salz, U. & Zimmermann, J. (2005). Chemical aspects of self-etching enamel-dentin adhesives: A systematic review. Dent Mater 21, 895910.CrossRefGoogle ScholarPubMed
Mount, G.J. (2003). Minimal intervention dentistry: Rationale of cavity design. Oper Dent 28, 9299.Google ScholarPubMed
Nakabayashi, N., Kojima, K. & Masuhara, E. (1982). The promotion of adhesion by the infiltration of monomers into tooth substrates. J Biomed Mater Res 16, 265273.CrossRefGoogle ScholarPubMed
Nakajima, M., Hosaka, K., Yamauti, M., Foxton, R.M. & Tagami, J. (2006). Bonding durability of a self-etching primer system to normal and caries-affected dentin under hydrostatic pulpal pressure in vitro. Am J Dent 19, 147150.Google ScholarPubMed
Nakajima, M., Sano, H., Urabe, I., Tagami, J. & Pashley, D.H. (2000). Bond strengths of single-bottle dentine adhesives to caries affected dentine. Oper Dent 25, 210.Google Scholar
Neves, A.A., Coutinho, E., Cardoso, M.V., Lambrechts, P. & Van Meerbeek, B. (2011). Current concepts and techniques for caries excavation and adhesion to residual dentin. J Adhes Dent 13, 722.Google Scholar
Oliveira, S.S., Pugach, M.K., Hilton, J.F., Watanabe, L.G., Marshall, S.J. & Marshall, G.W. Jr. (2003). The influence of the dentin smear layer on adhesion: A self-etching primer vs. a total-etch system. Dent Mater 19, 758767.CrossRefGoogle Scholar
Osorio, R., Ceballos, L., Tay, F.R., Cabrerizo-Vilches, M.A. & Toledano, M. (2002). Effect of sodium hypochlorite on dentin bonding with a polyalkenoic acid-containing adhesive system. J Biomed Mater Res 60, 316324.CrossRefGoogle ScholarPubMed
Perdigão, J. (2010). Dentin bonding—Variables related to the clinical situation and the substrate treatment. Dent Mater 26, e24e37.CrossRefGoogle Scholar
Sattabanasuk, V., Vachiramon, V., Qian, F. & Armstrong, S.R. (2007). Resin-dentin bond strength as related to different surface preparation methods. J Dent 35, 467475.CrossRefGoogle ScholarPubMed
Silva, N.R., Carvalho, R.M., Pegoraro, L.F., Tay, F.R. & Thompson, V.P. (2006). Evaluation of a self-limiting concept in dentinal caries removal. J Dent Res 85, 282286.CrossRefGoogle ScholarPubMed
Suwatviroj, O., Messer, L.B. & Palamara, J.E. (2004). Microtensile bond strength of tooth-colored materials to primary tooth dentin. Pediatr Dent 26, 6774.Google ScholarPubMed
Tay, F.R., Sidhu, S.K., Watson, T.F. & Pashley, D.H. (2004). Water-dependent interfacial transition zone in resin-modified glass-ionomer cement/dentin interfaces. J Dent Res 83, 644649.CrossRefGoogle ScholarPubMed
Toledano, M., Nieto-Aguilar, R., Osorio, R., Campos, A., Osorio, E., Tay, F.R. & Alaminos, M. (2010). Differential expression of matrix metalloproteinase-2 in human coronal and radicular sound and carious dentine. J Dent 38, 635640.CrossRefGoogle ScholarPubMed
Toledano, M., Yamauti, M., Osorio, E., Monticelli, F. & Osorio, R. (2011). Characterization of micro- and nanophase separation of dentin bonding agents by stereoscope and atomic force microscopy. Microsc Microanal 18, 279288.CrossRefGoogle Scholar
Unemori, M., Matsuya, Y., Matsuya, S., Akashi, A. & Akamine, A. (2003). Water sorption of poly(methyl methacrylate) containing 4-methacryloxyethyl trimellitic anhydride. Biomaterials 24, 13811387.CrossRefGoogle Scholar
Van Landuyt, K.L., Snauwaert, J., De Munck, J., Peumans, M., Yoshida, Y., Poitevin, A., Coutinho, E., Suzuki, K., Lambrechts, P. & Van Meerbeek, B. (2007). Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 28, 37573785.CrossRefGoogle ScholarPubMed
Van Meerbeek, B., De Munck, J., Yoshida, Y., Inoue, S., Vargas, M., Vijay, P., Van Landuyt, K., Lambrechts, P. & Vanherle, G. (2003). Buonocore memorial lectura: Adhesion to enamel and dentin: Current status and future challenges. Oper Dent 28, 215235.Google Scholar
Van Meerbeek, B., Peumans, M., Poitevin, A., Mine, A., Van Ende, A., Neves, A. & De Munck, J. (2010). Relationship between bond-strength tests and clinical outcomes. Dent Mater 26, e100e121.CrossRefGoogle ScholarPubMed
Walker, M.P., Wang, Y. & Spencer, P. (2002). Morphological and chemical characterization of the dentin/resin cement interface produced with a self-etching primer. J Adhes Dent 4, 181189.Google ScholarPubMed
Wang, Y. & Spencer, P. (2005). Continuing etching of an all-in-one adhesive in wet dentin tubules. J Dent Res 84, 350354.CrossRefGoogle ScholarPubMed
Wang, Y., Spencer, P. & Walker, M.P. (2006). Chemical profile of adhesive/caries-affected dentin interfaces using Raman microspectroscopy. J Biomed Mater Res A 81, 279286.Google Scholar
Wei, S.H., Kaquelle, J.C. & Massler, M. (1968). Remineralization of carious dentin. J Dent Res 47, 381391.CrossRefGoogle ScholarPubMed
Yazici, A.R., Ozgünaltay, G. & Dayangaç, B. (2002). A scanning electron microscopic study of different caries removal techniques on human dentin. Oper Dent 27, 360366.Google ScholarPubMed
Yelamanchili, A. & Darvell, B.W. (2008). Network competition in a resin-modified glass-ionomer cement. Dent Mater 24, 10651069.CrossRefGoogle Scholar
Yip, H.K. & Samaranayake, L.P. (1998). Caries removal techniques and instrumentation: A review. Clin Oral Investig 2, 148154.CrossRefGoogle ScholarPubMed
Yip, H.K., Tay, F.R., Ngo, H.C., Smales, R.J. & Pashley, D.H. (2001). Bonding of contemporary glass ionomer cements to dentin. Dent Mater 17, 456470.CrossRefGoogle ScholarPubMed
Yoshida, Y., Nagakane, K., Fukuda, R., Nakayama, Y., Okazaki, M., Shintani, H., Inoue, S., Tagawa, Y., Suzuki, K., De Munck, J. & Van Meerbeek, B. (2004). Comparative study on adhesive performance of functional monomers. J Dent Res 83, 454458.CrossRefGoogle ScholarPubMed
Yoshiyama, M., Doi, J., Nishitani, Y., Itota, T., Tay, F.R., Carvalho, R.M. & Pashley, D.H. (2004). Bonding ability of adhesive resins to caries-affected and caries-infected dentin. J Appl Oral Sci 12, 171176.CrossRefGoogle ScholarPubMed
Yoshiyama, M., Tay, F.R., Doi, J., Nishitani, Y., Yamada, T., Itou, K., Carvalho, R.M., Nakajima, M. & Pashley, D.H. (2002). Bonding of self-etch and total-etch adhesives to carious dentin. J Dent Res 81, 556560.CrossRefGoogle ScholarPubMed
Yoshiyama, M., Urayama, A., Kimochi, T., Matsuo, T. & Pashley, D.H. (2000). Comparison of conventional vs self-etching adhesive bonds to caries-affected dentin. Oper Dent 25, 163169.Google ScholarPubMed