Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T16:53:41.825Z Has data issue: false hasContentIssue false

Development, Preimaginal Phases and Adult Sensillar Equipment in Aganaspis Parasitoids (Hymenoptera: Figitidae) of Fruit Flies

Published online by Cambridge University Press:  28 August 2013

José Tormos*
Affiliation:
Unidad de Zoología, Facultad de Biología, Universidad de Salamanca, 37071, Salamanca, Spain
Luis de Pedro
Affiliation:
Unidad de Zoología, Facultad de Biología, Universidad de Salamanca, 37071, Salamanca, Spain
Francisco Beitia
Affiliation:
Instituto Valenciano de Investigaciones Agrarias, Unidad Asociada de Entomología IVIA/CIB-CSIC, Apartado Oficial. 46113-Montcada, Valencia, Spain
Beatriz Sabater
Affiliation:
Instituto Valenciano de Investigaciones Agrarias, Unidad Asociada de Entomología IVIA/CIB-CSIC, Apartado Oficial. 46113-Montcada, Valencia, Spain
Josep Daniel Asís
Affiliation:
Unidad de Zoología, Facultad de Biología, Universidad de Salamanca, 37071, Salamanca, Spain
Carlo Polidori
Affiliation:
Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Aganaspis daci and Aganaspis pelleranoi (Hymenoptera: Figitidae) are important parasitoids of fruit flies. Here we studied, with light and scanning electron microscopy, aspects of their morphology that could help with plans to mass rear and thus contribute to improved pest control (preimaginal phases) and to shed light on parasitoid-pest relationships (sensillar equipment). The two species present a stalked egg, eucoiliform first and second-instar larvae and hymenopteriform third instar and mature larvae. The first instar presents tegumental differentiations in the mesoma and first metasomal segment in A. daci, but not in A. pelleranoi, while unlike other figitids, neither species displays setae in the mesosomal processes. Second and third instar and mature larvae present tegumental differentiations in A. daci, but not in A. pelleranoi. The moniliform (female) and filiform (male) antennae of A. daci and A. pelleranoi harbor seven types of sensilla, four of them (sensilla campaniformia, sensilla coeloconica type II, and two types of sensilla trichoidea) described here for the first time in Cynipoidea. The largest sensilla were the multiporous placoid sensilla, which were smaller and more numerous in A. pelleranoi. Species also differed to some extent in morphology of sensilla coeloconica. Observations on the ovipositor revealed the presence of coeloconic sensilla on Valva I in both species.

Type
Biomedical and Biological Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akers, R.P. & Getz, W.M. (1992). A test of identified response classes among olfactory receptor neurons in the honey-bee worker. Chem Senses 17, 191209.CrossRefGoogle Scholar
Alborn, H.T., Lewis, W.J. & Tumlinson, J.H. (1995). Host-specific recognition kairomone for the parasitoid Microplitis croceipes (Cresson). J Chem Ecol 21, 16971708.CrossRefGoogle Scholar
Altner, H. (1977). Insect sensillum specificity and structures: An approach to a new typology. In Olfaction and Taste VI, Le Magnen, L. & MacLeod, P. (Eds.), pp. 295303. Paris: IRL.Google Scholar
Altner, H. & Prillinger, L. (1980). Ultrastructure of invertebrate chemo-, thermo-, and hygroreceptors and its functional significance. Int Rev Cytol 67, 69139.CrossRefGoogle Scholar
Altner, I., Hatt, H. & Altner, H. (1983). Structural properties of bimodal chemo- and mechanoreceptive setae on the pereiopods chelae of the crayfish, Austropotamobius torrentium . Cell Tissue Res 228, 357374.CrossRefGoogle Scholar
Andleeb, S., Shahid, M.S. & Mehmood, R. (2010). Biology of parasitoid Aganaspis daci (Weld) (Hymenoptera: Eucoilidae). Pak J Sci Ind Res 53, 201204.Google Scholar
Baaren, J. van, Boivin, G., Bourdais, D. & Roux, O. (2007). Antennal sensilla of hymenopteran parasitic wasps: Variations linked to host exploitation behavior. In Microscopy: Science, Technology, Applications and Education, Méndez-Vilas, A. & Díaz, J. (Eds.), pp. 345352. Badajoz, Spain: Formatex.Google Scholar
Baaren, J. van, Boivin, G., Le Lannic, J. & Nénon, J.P. (1999). Comparison of antennal sensilla of Anaphes victus and A. listronoti (Hymenoptera: Mymaridae), egg-parasitoids of Curculionidae. Zoomorphology 119, 18.CrossRefGoogle Scholar
Baranowski, R., Glenn, H. & Sivinski, J. (1993). Biological control of the Caribbean fruit fly (Diptera: Tephritidae). Fla Entomol 76, 245251.CrossRefGoogle Scholar
Beitia, F., Pérez-Hinarejos, M., Santiago, S., Garzón, E., Tarazona, I. & Falcó, J.V. (2009). Control biologico con parasitoides. Levante agricola 385, 145150.Google Scholar
Bellows, T.S. & van Driesche, R.G. (1999). Life table construction and analysis for evaluating biological control agents. In Handbook of Biological Control. Principles and Applications of Biological Control, Bellows, T.S. & Fisher, T.W. (Eds.), pp. 199223. San Diego, CA: Academic Press.Google Scholar
Bleeker, M.A.K., Smid, H.M., Aelst, A.C., van Loon, J.J.A. & Vet, L.E.M. (2004). Antennal sensillae of two parasitoid wasps: A comparative scanning electron microscopy study. Microsc Res Tech 63, 266273.CrossRefGoogle ScholarPubMed
Brown, P.E. & Anderson, M. (1998). Morphology and ultrastructure of sense organs on the ovipositor of Trybliographa rapae, a parasitoid of the cabbage root fly. J Insect Physiol 44, 10171024.CrossRefGoogle ScholarPubMed
Butterfield, A. & Anderson, M. (1994). Morphology and ultrastructure of antennal sensilla of the parasitoid, Trybliographa rapae (Westw.) (Hymenoptera: Cynipidae). Int J Insect Morphol Embryol 23, 1120.CrossRefGoogle Scholar
Callahan, P.S. (1975). Insect antennae with special reference to the mechanism of scent detection and the evolution of the sensilla. Int J Insect Morphol Embryol 4, 381430.CrossRefGoogle Scholar
Cals-Usciati, J., Cals, P. & Pralavorio, R. (1985). Functional adaptations of the feeding mechanism in the primary larva of Trybliographa daci Weld (Hymenoptera Cynipoidea), endoparasitoid of the Mediterranean fruit fly Ceratitis capitata. C R Seances Acad Sci, Ser 3 300, 103108.Google Scholar
Clausen, C.P. (1972). Entomophagous Insects. New York: Hafner Publishing Company.Google Scholar
Clausen, C.P. (1978). Introduced Parasites and Predators of Arthropod Pests and Weeds: A World Review. Washington, DC: U.S. Department of Agricultural Handbook.Google Scholar
Clausen, C.P., Clancy, D.W. & Chock, Q.C. (1965). Biological control of the oriental fruit fly (Dacus dorsalis Hendel) and other fruit flies in Hawaii. Agri Res Serv 1322, 1102.Google Scholar
Díaz, N.B., Guimaraes, J.A. & Gallardo, F.E. (2006). Systematic review of species of the genus Aganaspis Lin (Hymenoptera: Figitidae: Eucoilinae). T Am Entomol Soc 132, 271277.Google Scholar
Dietz, A. & Humphreys, J. (1971). Scanning electron microscopic studies of antennal receptors of the worker honey bee, including Sensilla campaniformia . Ann Entomol Soc Am 64, 919925.CrossRefGoogle Scholar
El-Heneidy, A.H. & Ramadan, M.M. (2010). Bactrocera zonata (Saunders) status and its natural enemies in Egypt. In 8th International Symposium on Fruit Flies of Economic Importance, p. 115. Valencia, Spain: Editorial Universitat Politècnica de València.Google Scholar
Evans, H.E. (1987). Cynipoidea. In Immature Insects, Stehr, F.W. (Ed.), pp. 665667. Dubuque, IA: Kendall/Hunt Publishing Co. Google Scholar
Guimaraes, J.A. & Zucchi, R.A. (2004). Parasitism behavior of three species of Eucoilinae (Hymenoptera: Cynipoidea: Figitidae) fruit fly parasitoids (Diptera) in Brazil. Neotrop Entomol 33, 217224.CrossRefGoogle Scholar
Gutiérrez, A.P. (1970). Studies on host selection and host specificity of the aphid hyperparasite Charips victrix (Hymenoptera: Cynipidae). 6. Description of sensory structures and a synopsis of host selection and host specificity. Ann Entomol Soc Am 63, 17051709.CrossRefGoogle Scholar
Isidoro, N., Bin, F., Colazza, S. & Vinson, S.D. (1996). Morphology of antennal gustatory sensilla and glands in some parasitoids Hymenoptera with hypothesis on their role in sex and host recognition. J Hym Res 5, 206239.Google Scholar
Jervis, M.A., Copland, M.J.W. & Harvey, J.A. (2005). The life circle. In Insects as Natural Enemies. A Practical Perspective, Jervis, M.A. (Ed.), pp. 112196. Amsterdam: Kluwer Academic Publishers.CrossRefGoogle Scholar
Keil, T.A. (1999). Morphology and development of the peripheral olfactory organs. In Insect Olfaction, Hansson, B.S. (Ed.), pp. 547. New York: Springer-Verlag.CrossRefGoogle Scholar
Lacher, V. (1964). Elektrophysiologische Untersuchungen an einzelnen Rezeptoren für Geruch, Kohlendioxid, Luftfeuchtigkeit and Temperatur auf den Antennen der Arbeitsbiene und der Drohne (Apis mellifera L). Z Verg Physiol 48, 587625.CrossRefGoogle Scholar
Lenteren, J.C. van, Ruschioni, S., Romani, R., van Loon, J.J.A., Qiu, Y.T., Smid, H.M., Isidoro, N. & Bin, F. (2007). Structure and electrophysiological responses of gustatory organs on the ovipositor of the parasitoid Leptopilina heterotoma . Arthropod Struct Dev 36, 271276.CrossRefGoogle ScholarPubMed
Llácer, E., Urbaneja, A., Garrido, A. & Jacas, J. (2005). Morphology and development of immature stages of Galleosomyia fausta (Hymenoptera: Eulophidae: Tetrastichinae). Ann Entomol Soc Am 98, 747753.CrossRefGoogle Scholar
Melk, J.P. & Govind, S. (1999). Developmental analysis of Ganaspis xanthopoda, a larval parasitoid of Drosophila melanogaster . J Exp Biol 202, 18851896.CrossRefGoogle ScholarPubMed
Meng, Z.J., Yan, S.C., Yang, C.P. & Ruan, C.C. (2012). Asymmetrical distribution of antennal sensilla in the female Anastatus japonicus Ashmead (Hymenoptera: Eupelmidae). Microsc Res Tech 75, 10661075.CrossRefGoogle ScholarPubMed
Merivee, E., Vanatoa, A., Luik, A., Rahi, M., Sammelselg, V. & Ploomi, A. (2003). Electrophysiological identification of cold receptors on the antennae of the ground beetle Pterostichus aethiops . Physiol Entomol 28, 8896.CrossRefGoogle Scholar
Nieves-Aldrey, J.L., Vårdal, H. & Ronquist, F. (2004). Comparative morphology of terminal-instar larvae of Cynipoidea: Phylogenetic implications. Zool Scr 34, 1536.CrossRefGoogle Scholar
Ochieng, S.A., Park, K.C., Zhu, J.W. & Baker, T.C. (2000). Functional morphology of antennal chemoreceptors of the parasitoid Microplitis croceipes (Hymenoptera: Braconidae). Arthropod Struct Dev 29, 231240.CrossRefGoogle ScholarPubMed
Onagbola, E.O. & Fadamiro, H.Y. (2007). Morphology and development of Pteromalus cerealellae (Ashmead) (Hymenoptera: Pteromalidae) on Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae). Biocontrol 53, 737750.CrossRefGoogle Scholar
Onagbola, E.O. & Fadamiro, H.Y. (2008). Scanning electron microscopy studies of antennal sensilla of Pteromalus cerealellae (Hymenoptera: Pteromalidae). Micron 39, 526535.CrossRefGoogle ScholarPubMed
Ovruski, S.M. (1994). Immature stages of Aganaspis pelleranoi (Brethes) (Hymenoptera: Cynipoidea: Eucoilidae), a parasitoid of Ceratitis capitata (Wied.) and Anastrepha spp. (Diptera: Tephritidae). J Hym Res 3, 233239.Google Scholar
Ovruski, S.M. & Aluja, M. (2002). Mating behavior of Aganaspis pelleranoi (Brèthes) (Hymenoptera: Figitidae, Eucoilinae), a fruit fly (Diptera: Tephritidae) larval parasitoid. J Insect Behav 15, 139151.CrossRefGoogle Scholar
Ovruski, S.M., Aluja, M., Sivinski, J. & Wharton, R. (2000). Hymenopteran parasitoids on fruit-infesting Tephritidae (Diptera) in Latin American and the southern United States: Diversity, distribution, taxonomic status and their use in fruit fly biological control. Integrated Pest Manag Rev 5, 81107.CrossRefGoogle Scholar
Papadopoulos, N.T. & Katsoyannos, B.I. (2003). Field parasitism of C. capitata larvae by Aganaspis daci in Chios, Greece. Biocontrol 48, 191195.CrossRefGoogle Scholar
Polidori, C., Jorge García, A. & Nieves-Aldrey, J.L. (2012). Antennal sensillar equipment in closely related predatory wasp species (Hymenoptera: Philanthinae) hunting for different prey types. C R Biol 335, 279291.CrossRefGoogle ScholarPubMed
Quicke, D.L.J. (1997). Parasitic Wasps. London: Chapman & Hall.Google Scholar
Romani, R., Isidoro, N. & Bin, F. (2010a). Antennal structures used in communication by egg parasitoids. In Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma, Consoli, F.L., Parra, J.R.P. & Zucchi, R.A. (Eds.), pp. 5796. New York: Springer.Google Scholar
Romani, R., Rondoni, G., Gragnoli, L., Pergolari, P., Santinelli, C., Rossi Stacconi, M.V. & Ricci, C. (2010b). Indagini bio-etologiche e morfologiche su Dryocosmus kuriphilus Yasumatsu. In Atti Accademia Nazionale Italiana di Entomologia Anno LVIII, 97104.Google Scholar
Roskam, J.C. (1982). Larval characters of some eurytomid species Hymenoptera, Chalcidoidea. Proc Kon Ned Akad Wet 85, 293305.Google Scholar
Tormos, J., Asís, J.D., Gayubo, S.F. & Martín, M.A. (2004). Descriptions of the final instar of Eurytoma nodularis and E. heriadi (Hymenoptera: Eurytomidae). Fla Entomol 87, 278282.CrossRefGoogle Scholar
Tormos, J., Beitia, F., Böckman, E.A. & Asís, J.D. (2009a). The preimaginal stages and development of Spalangia cameroni Perkins (Hymenoptera: Pteromalidae) on Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Micron 40, 646658.CrossRefGoogle ScholarPubMed
Tormos, J., Beitia, F., Böckmann, E.A., Asís, J.D. & Fernández, S. (2009b). The preimaginal phases and development of Pachycrepoideus vindemmiae (Hymenoptera, Pteromalidae) on Mediterranean fruit fly, Ceratitis capitata (Diptera, Tephritidae). Microsc Microanal 15, 422434.CrossRefGoogle ScholarPubMed
Tormos, J., Frago, E., Selfa, J., Asís, J.D., Pujade-villar, J. & Guara, M. (2007). Description of the final instar larva of Trichomalopsis peregrina (Hymenoptera, Pteromalidae), with data and comments on the preimaginal stages. Fla Entomol 90, 180183.CrossRefGoogle Scholar
Tormos, J., Pardo, X., Jiménez, R., Asís, J.D. & Gayubo, S.F. (2003). Descriptions of adults, immature stages and venom apparatus of two new species of Dacnusini: Chorebus pseudoasphodeli sp. n., parasitic on Phytomyza chaerophili Kaltenbach and C. pseudoasramenes sp. n., parasitic on Cerodontha phragmitophila Hering (Hymenoptera: Braconidae: Alysiinae; Diptera: Agromyzidae). Eur J Entomol 100, 393400.CrossRefGoogle Scholar
Vårdal, H., Sahlen, G. & Ronquist, F. (2003). Morphology and evolution of the cynipoid egg (Hymenoptera). Zool J Linn Soc 139, 247260.CrossRefGoogle Scholar
Weld, L.H. (1951). A new species of Trybliographa (Hymenoptera: Cynipidae). Proc Hawaii Entomol Soc 14, 331332.Google Scholar
Wharton, R.A., Gilstrap, F.E., Rhodei, R.H., Fischel, M.M. & Hart, W.G. (1981). Hymenopterus egg-pupal and larval-pupal parasitoids of Ceratitis capitata and Anastrepha spp. (Diptera: Tephritidae) in Costa Rica. Entomophaga 26, 285290.CrossRefGoogle Scholar
Whitman, D.W. & Eller, F.J. (1992). Orientation of Microplitis croceipes (Hymenoptera: Braconidae) to green leaf volatiles: Dose-response curves. J Chem Ecol 18, 17431753.CrossRefGoogle Scholar