Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T21:41:09.596Z Has data issue: false hasContentIssue false

Development and Deployment of Automated Machine Learning Detection in Electron Microcopy Experiments

Published online by Cambridge University Press:  30 July 2021

Kevin G. Field
Affiliation:
University of Michigan, United States
Ryan Jacobs
Affiliation:
University of Wisconsin, United States
Mingen Shen
Affiliation:
University of Wisconsin, United States
Matthew Lynch
Affiliation:
University of Michigan, United States
Priyam Patki
Affiliation:
University of Michigan, United States
Christopher Field
Affiliation:
Theia Scientific, LLC, Arlington, Virginia, United States
Dane Morgan
Affiliation:
University of Wisconsin Madison, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Evaluation of Materials for Nuclear Applications
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Li, W., Field, K.G., Morgan, D., Automated defect analysis in electron microscopic images, Npj Comput. Mater. 4 (2018) 36. doi:10.1038/s41524-018-0093-8.CrossRefGoogle Scholar
Roberts, G., Haile, S.Y., Sainju, R., Edwards, D.J., Hutchinson, B., Zhu, Y., Deep Learning for Semantic Segmentation of Defects in Advanced STEM Images of Steels, Sci. Rep. 9 (2019) 12744. doi:10.1038/s41598-019-49105-0.CrossRefGoogle ScholarPubMed
Anderson, C.M., Klein, J., Rajakumar, H., Judge, C.D., B, LK., Automated Classification of Helium Ingress in Irradiated X-750, ArXiv:1912.04252. (2019) 17.Google Scholar
Förster, G.D., Castan, A., Loiseau, A., Nelayah, J., Alloyeau, D., Fossard, F., Bichara, C., Amara, H., A deep learning approach for determining the chiral indices of carbon nanotubes from high-resolution transmission electron microscopy images, Carbon N. Y. 169 (2020) 465474. doi:10.1016/j.carbon.2020.06.086.CrossRefGoogle Scholar
Zhang, C., Feng, J., DaCosta, L.R., Voyles, P.M., Atomic resolution convergent beam electron diffraction analysis using convolutional neural networks, Ultramicroscopy. 210 (2020) 112921. doi:10.1016/j.ultramic.2019.112921.CrossRefGoogle Scholar
Yu, Z.X., Wei, S.C., Zhang, J.W., Wang, B., Wang, Y.J., Liang, Y., Tian, H.L., High-throughput, algorithmic determination of pore parameters from electron microscopy, Comput. Mater. Sci. 171 (2020) 109216. doi:10.1016/j.commatsci.2019.109216.CrossRefGoogle Scholar
Li, X., Dyck, O., Unocic, R.R., Ievlev, A. V., Jesse, S., Kalinin, S. V., Statistical learning of governing equations of dynamics from in-situ electron microscopy imaging data, Mater. Des. 195 (2020) 108973. doi:10.1016/j.matdes.2020.108973.CrossRefGoogle Scholar
Ziatdinov, M., Jesse, S., Sumpter, B.G., Kalinin, S. V, Dyck, O., Tracking atomic structure evolution during directed electron beam induced Si-atom motion in graphene via deep machine learning, Nanotechnology. (2020). doi:10.1088/1361-6528/abb8a6.Google Scholar
Groschner, C.K., Choi, C., Scott, M.C., Methodologies for Successful Segmentation of HRTEM Images via Neural Network, (2020).Google Scholar
Redmon, J., Farhadi, A., YOLOv3: An Incremental Improvement, (2018).Google Scholar