Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T16:58:48.741Z Has data issue: false hasContentIssue false

Determining On-Axis Crystal Thickness with Quantitative Position-Averaged Incoherent Bright-Field Signal in an Aberration-Corrected STEM

Published online by Cambridge University Press:  04 May 2012

Huolin L. Xin*
Affiliation:
Department of Physics, Cornell University, Ithaca, NY 14853, USA
Ye Zhu
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
David A. Muller
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

An accurate determination of specimen thickness is essential for quantitative analytical electron microscopy. Here we demonstrate that a position-averaged incoherent bright-field signal recorded on an absolute scale can be used to determine the thickness of on-axis crystals with a precision of ±1.6 nm. This method measures both the crystalline and the noncrystalline parts (surface amorphous layers) of the sample. However, it avoids the systematic error resulting from surface plasmon contributions to the inelastic mean-free-path thickness estimated by electron energy loss spectroscopy.

Type
Special Section: Aberration-Corrected Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borisevich, A., Ovchinnikov, O.S., Chang, H.J., Oxley, M.P., Yu, P., Seidel, J., Eliseev, E.A., Morozovska, A.N., Ramesh, R., Pennycook, S.J. & Kalinin, S.V. (2010). Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from Z-contrast scanning transmission electron microscopy image atomic column shape analysis. ACS Nano 4(10), 60716079.CrossRefGoogle ScholarPubMed
Bosman, M., Keast, V., García-Muñoz, J., D'Alfonso, A., Findlay, S. & Allen, L. (2007). Two-dimensional mapping of chemical information at atomic resolution. Phys Rev Lett 99(8), 086102. CrossRefGoogle ScholarPubMed
Botton, G.A., Lazar, S. & Dwyer, C. (2010). Elemental mapping at the atomic scale using low accelerating voltages. Ultramicroscopy 110(8), 926934.CrossRefGoogle Scholar
Crewe, A.V., Wall, J. & Langmore, J. (1970). Visibility of single atoms. Science 168(3937), 13381340.CrossRefGoogle ScholarPubMed
D'Alfonso, A.J., Freitag, B., Klenov, D. & Allen, L.J. (2010). Atomic-resolution chemical mapping using energy-dispersive X-ray spectroscopy. Phys Rev B 81(10), 100101(R). Google Scholar
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Springer.CrossRefGoogle Scholar
Ercius, P., Gignac, L.M., Hu, C.K. & Muller, D.A. (2009). Three-dimensional measurement of line edge roughness in copper wires using electron tomography. Microsc Microanal 15(3), 244250.CrossRefGoogle ScholarPubMed
Ercius, P., Weyland, M., Muller, D.A. & Gignac, L.M. (2006). Three-dimensional imaging of nanovoids in copper interconnects using incoherent bright field tomography. Appl Phys Lett 88, 243116. CrossRefGoogle Scholar
Fitting, L., Thiel, S., Schmehl, A., Mannhart, J. & Muller, D.A. (2006). Subtleties in ADF imaging and spatially resolved EELS: A case study of low-angle twist boundaries in SrTiO3 . Ultramicroscopy 106(11-12), 10531061.CrossRefGoogle ScholarPubMed
Hartel, P., Rose, H. & Dinges, C. (1996). Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63(2), 93114.CrossRefGoogle Scholar
Hillyard, S., Loane, R.F. & Silcox, J. (1993). Annular dark-field imaging: Resolution and thickness effects. Ultramicroscopy 49, 1425.CrossRefGoogle Scholar
Hillyard, S. & Silcox, J. (1993). Thickness effects in ADF STEM zone axis images. Ultramicroscopy 52(3-4), 325334.CrossRefGoogle Scholar
Howie, A. (1979). Image-contrast and localized signal selection techniques. J Microsc-Oxf 117(Sep), 1123.CrossRefGoogle Scholar
Kirkland, E.J. (1998). Advanced Computing in Electron Microscopy. New York: Plenum Press.CrossRefGoogle Scholar
Kirkland, E.J. (2010). Advanced Computing in Electron Microscopy. New York: Springer Verlag.CrossRefGoogle Scholar
Kirkland, E.J., Loane, R.F. & Silcox, J. (1987). Simulation of annular dark field stem images using a modified multislice method. Ultramicroscopy 23(1), 7796.CrossRefGoogle Scholar
Klenov, D., Findlay, S., Allen, L. & Stemmer, S. (2007). Influence of orientation on the contrast of high-angle annular dark-field images of silicon. Phys Rev B 76(1), 014111. CrossRefGoogle Scholar
Kourkoutis, L.F., Parker, M., Vaithyanathan, V., Schlom, D. & Muller, D. (2011). Direct measurement of electron channeling in a crystal using scanning transmission electron microscopy. Phys Rev B 84(7), 075485. CrossRefGoogle Scholar
Kourkoutis, L.F., Xin, H., Higuchi, T., Hotta, Y., Lee, J., Hikita, Y., Schlom, D., Hwang, H. & Muller, D. (2010). Atomic-resolution spectroscopic imaging of oxide interfaces. Philos Mag 90(35-36), 47314749.CrossRefGoogle Scholar
Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T. & Pennycook, S.J. (2010). Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464(7288), 571574.CrossRefGoogle ScholarPubMed
LeBeau, J., Findlay, S., Wang, X., Jacobson, A., Allen, L. & Stemmer, S. (2009). High-angle scattering of fast electrons from crystals containing heavy elements: Simulation and experiment. Phys Rev B 79(21), 214110. CrossRefGoogle Scholar
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2008). Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev Lett 100(20), 206101. CrossRefGoogle ScholarPubMed
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2010a). Position averaged convergent beam electron diffraction: Theory and applications. Ultramicroscopy 110(2), 118125.CrossRefGoogle ScholarPubMed
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2010b). Standardless atom counting in scanning transmission electron microscopy. Nano Lett 10(11), 44054408.CrossRefGoogle ScholarPubMed
LeBeau, J.M. & Stemmer, S. (2008). Experimental quantification of annular dark-field images in scanning transmission electron microscopy. Ultramicroscopy 108(12), 16531658.CrossRefGoogle ScholarPubMed
Li, Z.Y., Young, N.P., Di Vece, M., Palomba, S., Palmer, R.E., Bleloch, A.L., Curley, B.C., Johnston, R.L., Jiang, J. & Yuan, J. (2008). Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451(7174), 4648.CrossRefGoogle ScholarPubMed
Liferovich, R.P. & Mitchell, R.H. (2004). A structural study of ternary lanthanide orthoscandate perovskites. J Solid State Chem 177(6), 21882197.CrossRefGoogle Scholar
Loane, R.F., Xu, P. & Silcox, J. (1991). Thermal vibrations in convergent-beam electron diffraction. Acta Crystallogr A 47(3), 267278.CrossRefGoogle Scholar
Lupini, A.R., Borisevich, A.Y., Idrobo, J., Christen, H.M., Biegalski, M. & Pennycook, S.J. (2009). Characterizing the two-and three-dimensional resolution of an improved aberration-corrected STEM. Microsc Microanal 15, 441453.CrossRefGoogle ScholarPubMed
Mittal, A. & Andre Mkhoyan, K. (2011). Limits in detecting an individual dopant atom embedded in a crystal. Ultramicroscopy 111, 11011110.CrossRefGoogle ScholarPubMed
Mkhoyan, K.A., Babinec, T., Maccagnano, S.E., Kirkland, E.J. & Silcox, J. (2007). Separation of bulk and surface-losses in low-loss EELS measurements in STEM. Ultramicroscopy 107(4-5), 345355.CrossRefGoogle ScholarPubMed
Mkhoyan, K.A., Batson, P.E., Cha, J., Schaff, W.J. & Silcox, J. (2006). Direct determination of local lattice polarity in crystals. Science 312(5778), 1354. CrossRefGoogle ScholarPubMed
Muller, D.A. (2009). Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat Mater 8(4), 263270.CrossRefGoogle ScholarPubMed
Muller, D.A., Kourkoutis, L.F., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N. & Krivanek, O.L. (2008). Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319(5866), 10731076.CrossRefGoogle ScholarPubMed
Peng, L.-M. (2005). Electron atomic scattering factors, Debye–Waller factors and the optical potential for high-energy electron diffraction. J Elec Microsc 54(3), 199207.Google ScholarPubMed
Radmilovic, V., Ophus, C., Marquis, E.A., Rossell, M.D., Tolley, A., Gautam, A., Asta, M. & Dahmen, U. (2011). Highly monodisperse core–shell particles created by solid-state reactions. Nat Mater 10(9), 710715.CrossRefGoogle ScholarPubMed
Rose, H. (1975). Theory of image-formation in electron-microscopy I. Optik 42(3), 217244.Google Scholar
Rose, H. & Fertig, J. (1976). Influence of detector geometry on image properties of STEM for thick objects. Ultramicroscopy 2(1), 7787.CrossRefGoogle ScholarPubMed
Sheppard, C.J.R. & Choudhury, A. (1977). Image formation in the scanning microscope. J Mod Optics 24(10), 10511073.Google Scholar
Van Aert, S., Batenburg, K.J., Rossell, M.D., Erni, R. & Van Tendeloo, G. (2011). Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470(7334), 374377.CrossRefGoogle ScholarPubMed
Voyles, P., Muller, D. & Kirkland, E. (2004). Depth-dependent imaging of individual dopant atoms in silicon. Microsc Microanal 10(2), 291300.CrossRefGoogle ScholarPubMed
Voyles, P.M., Muller, D.A., Grazul, J.L., Citrin, P.H. & Gossmann, H.J.L. (2002). Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416(6883), 826829.CrossRefGoogle ScholarPubMed
Xin, H.L., Intaraprasonk, V. & Muller, D.A. (2008). Depth sectioning of individual dopant atoms with aberration-corrected scanning transmission electron microscopy. Appl Phys Lett 92, 013125. CrossRefGoogle Scholar
Xin, H.L. & Muller, D.A. (2010). Three-dimensional imaging in aberration-corrected electron microscopes. Microsc Microanal 16(4), 445455.CrossRefGoogle ScholarPubMed
Xin, H.L., Mundy, J.A., Liu, Z., Cabezas, R., Hovden, R., Kourkoutis, L.F., Zhang, J., Subramanian, N.P., Makharia, R., Wagner, F.T. & Muller, D.A. (2011). Atomic-resolution spectroscopic imaging of ensembles of nanocatalyst particles across the life of a fuel cell. Nano Lett 12(1), 490497.CrossRefGoogle ScholarPubMed