Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-03T05:33:07.256Z Has data issue: false hasContentIssue false

Determination and Correction of Position Detection Nonlinearity in Single Particle Tracking and Three-Dimensional Scanning Probe Microscopy

Published online by Cambridge University Press:  01 August 2004

Christian Tischer
Affiliation:
Cell Biology and Biophysics Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
Arnd Pralle
Affiliation:
Department of Molecular Cell Biology, University of California–Berkeley, Berkeley, CA 94720, USA
Ernst-Ludwig Florin
Affiliation:
Cell Biology and Biophysics Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
Get access

Abstract

A general method is presented for determining and correcting nonlinear position detector responses in single particle tracking as used in three-dimensional scanning probe microscopy based on optical tweezers. The method uses locally calculated mean square displacements of a Brownian particle to detect spatial changes in the sensitivity of the detector. The method is applied to an optical tweezers setup, where the position fluctuations of a microsphere within the optical trap are measured by an interferometric detection scheme with nanometer precision and microsecond temporal resolution. Detector sensitivity profiles were measured at arbitrary positions in solution with a resolution of approximately 6 nm and 20 nm in the lateral and axial directions, respectively. Local detector sensitivities are used to reconstruct the real positions of the particle from the measured position signals.

Type
Instrumentation and Techniques
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., & Chu, S. (1986). Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11, 288.Google Scholar
BarZiv, R., Meller, A., Tlusty, T., Moses, E., Stavans, J., & Safran, S.A. (1997). Localized dynamic light scattering: Probing single particle dynamics at the nanoscale. Phys Rev Lett 78, 154157.Google Scholar
Box, G.E.P., Jenkins, G.M., & Reinsel, G.C. (1994). Time Series Analysis: Forecasting and Control, 3rd ed., Upper Saddle River, NY: Prentice Hall.
De Brabander, M., Geuens, G., Nuydens, R., Moeremans, M., & De Mey, J. (1985). Probing microtubule-dependent intracellular motility with nanometer particle video ultramicroscopy (Nanovid ultramicroscopy). Cytobios 43, 273283.Google Scholar
Denk, W. & Webb, W.W. (1990). Optical measurement of picometer displacements of transparent, microscopic objects. Appl Opt 29, 23822391.Google Scholar
Einstein, A. (1905). On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat. Ann Phys 17, 549560.Google Scholar
Enderlein, J., Ruckstuhl, T., & Seeger, S. (1999). Highly efficient optical detection of surface-generated fluorescence. Appl Opt 38, 724732.Google Scholar
Florin, E.-L., Pralle, A., Stelzer, E.H.K., & Hörber, J.K.H. (1998). Photonic force microscope calibration by thermal noise analysis. Appl Phys 66, 7578.Google Scholar
Gittes, F. & Schmidt, C.F. (1997). Signals and noise in micromechanical measurements. In Methods in Cell Biology (Laser Tweezers in Cell Biology), Sheetz, M. (Ed.), pp. 129154. Orlando, FL: Academic Press.
Gittes, F. & Schmidt, C.F. (1998). Interference model for back-focal-plane displacement detection in optical tweezers. Opt Lett 23, 79.Google Scholar
Gosse, C. & Croquette, V. (2002). Magnetic tweezers: Micromanipulation and force measurement at the molecular level. Biophys J 82, 33143329.Google Scholar
Hell, S.W. & Stelzer, E.H.K. (1995). Lens aberrations in confocal fluorescence microscopy. In Handbook of Biological Confocal Microscopy, Pawley, J.B. (Ed.), pp. 347354. New York: Plenum Press.
Kao, H.P. & Verkman, A.S. (1994). Tracking of single fluorescent particles in three dimensions: Use of cylindrical optics to encode particle position. Biophys J 67, 12911300.Google Scholar
Lukosz, W. & Kunz, R.E. (1977). Light emission by magnetic and electric diploes close to a plane interface. J Opt Soc Am 67, 16071615.Google Scholar
Pralle, A., Florin, E.-L., Stelzer, E.H.K., & Hörber, J.K.H. (1998). Local viscosity probed by photonic force microscopy. Appl Phys 66, 7173.Google Scholar
Pralle, A., Prummer, M., Florin, E.-L., Stelzer, E.H.K., & Hörber, J.K.H. (1999). Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc Res Tech 44, 123134.Google Scholar
Prieve, D.C. & Frej, N.A. (1990). Total internal reflection microscopy: A quantitative tool for the measurement of colloidal forces. Langmuir 6, 396.Google Scholar
Rohrbach, A., Kress, H.K., & Stelzer, E.H.K. (2003). Three-dimensional tracking of small spheres in focused laser beams: Influence of the detection angular aperture. Opt Lett 28, 411413.Google Scholar
Rohrbach, A. & Stelzer, E.H.K. (2002). Trapping forces, force constants and potential depths for dielectric spheres in the presence of spherical aberrations. Appl Opt 41, 24942507.Google Scholar
Saxton, M.J. & Jacobson, K. (1997). Single-particle tracking: Applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26, 373.Google Scholar
Speidel, M., Jonás, A., & Florin, E.-L. (2003). Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. Opt Lett 28, 6971.Google Scholar
Tischer, C., Altmann, S., Fisinger, S., Hörber, J.K.H., Stelzer, E.H.K., & Florin, E.-L. (2001). Three-dimensional thermal noise imaging. Appl Phys Lett 79, 38783880.Google Scholar