Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T05:02:29.925Z Has data issue: false hasContentIssue false

Cryogenic Transmission Electron Microscopy: Aqueous Suspensions of Nanoscale Objects

Published online by Cambridge University Press:  04 September 2013

Nathan D. Burrows
Affiliation:
Department of Chemistry, University of Minnesota – Twin Cities 207 Pleasant St. SE, Minneapolis, MN 55455, USA
R. Lee Penn*
Affiliation:
Department of Chemistry, University of Minnesota – Twin Cities 207 Pleasant St. SE, Minneapolis, MN 55455, USA
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Direct imaging of nanoscale objects suspended in liquid media can be accomplished using cryogenic transmission electron microscopy (cryo-TEM). Cryo-TEM has been used with particular success in microbiology and other biological fields. Samples are prepared by plunging a thin film of sample into an appropriate cryogen, which essentially produces a snapshot of the suspended objects in their liquid medium. With successful sample preparation, cryo-TEM images can facilitate elucidation of aggregation and self-assembly, as well as provide detailed information about cells and viruses. This work provides an explanation of sample preparation, detailed examples of the many artifacts found in cryo-TEM of aqueous samples, and other key considerations for successful cryo-TEM imaging.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Chemical & Life Science Laboratory, Department of Chemistry, School of Chemical Sciences, University of Illinois, A524, Box # 52-6, 600 S Mathews, Urbana, IL 61801, USA

References

Adrian, M., Dubochet, J., Lepault, J. & McDowall, A.W. (1984). Cryo-electron microscopy of viruses. Nature 308, 3236.CrossRefGoogle ScholarPubMed
Bai, Z. & Lodge, T.P. (2010). Polymersomes with ionic liquid interiors dispersed in water. J Am Chem Soc 132, 1626516270.CrossRefGoogle ScholarPubMed
Bangham, A.D. & Horne, R.W. (1964). Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8, 660668.CrossRefGoogle ScholarPubMed
Bellare, J.R., Davis, H.T., Scriven, L.E. & Talmon, Y. (1988). Controlled environment vitrification system: An improved sample preparation technique. J Electron Microsc Tech 10, 87111.Google Scholar
Boettcher, C., Schade, B. & Fuhrhop, J.-H. (2001). Comparative cryo-electron microscopy of noncovalent n-dodecanoyl- (D- and L-) serine assemblies in vitreous toluene and water. Langmuir 17, 873877.Google Scholar
Böttcher, C., Endisch, C., Fuhrhop, J.H., Catterall, C. & Eaton, M. (1998). High-yield preparation of oligomeric c-type DNA toroids and their characterization by cryoelectron microscopy. J Am Chem Soc 120, 1217.CrossRefGoogle Scholar
Brenner, S. & Horne, R.W. (1959). A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta 34, 103110.Google Scholar
Burns, P.C. (2011). Nanoscale uranium-based cage clusters inspired by uranium mineralogy. Mineral Mag 75, 125.Google Scholar
Burrows, N.D., Hale, C.R.H. & Penn, R.L. (2012). Effect of ionic strength on the kinetics of crystal growth by oriented aggregation. Cryst Growth Des 12, 47874797.Google Scholar
Burrows, N.D., Hale, C.R.H. & Penn, R.L. (2013). Effect of pH on the kinetics of crystal growth by oriented aggregation. Cryst Growth Des 13, 33963403.CrossRefGoogle Scholar
Butter, K., Bomans, P.H., Frederik, P.M., Vroege, G.J. & Philipse, A.P. (2003). Direct observation of dipolar chains in ferrofluids in zero field using cryogenic electron microscopy. J Phys Condens Matter 15, S1451S1470.Google Scholar
Chiruvolu, S., Naranjo, E. & Zasadzinski, J.A. (1994). Microstructure of complex fluids by electron microscopy. In Structure and Flow in Surfactant Solutions, Herb, C.A. & Prud'homme, R.K. (Eds.), pp. 86104. Chicago: American Chemical Society.CrossRefGoogle Scholar
Comolli, L.R., Duarte, R., Baum, D., Luef, B., Downing, K.H., Larson, D.M., Csencsits, R. & Banfield, J.F. (2011). A portable cryo-plunger for on-site intact cryogenic microscopy sample preparation in natural environments. Microsc Res Tech 75, 829836.Google Scholar
Cui, H., Hodgdon, T.K., Kaler, E.W., Abezgauz, L., Danino, D., Lubovsky, M., Talmon, Y. & Pochan, D.J. (2007). Elucidating the assembled structure of amphiphiles in solution via cryogenic transmission electron microscopy. Soft Matter 3, 945955.CrossRefGoogle ScholarPubMed
Davis, V.A., Parra-Vasquez, A.N.G., Green, M.J., Rai, P.K., Behabtu, N., Prieto, V., Booker, R.D., Schmidt, J., Kesselman, E., Zhou, W., Fan, H., Adams, W.W., Hauge, R.H., Fischer, J.E., Cohen, Y., Talmon, Y., Smalley, R.E. & Pasquali, M. (2009). True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nature Nanotechnol 4, 830834.Google Scholar
Deamer, D.W. & Branton, D. (1967). Fracture planes in an ice-bilayer model membrane system. Science 158, 655657.CrossRefGoogle Scholar
Dubochet, J. (2012). Cryo-EM—The first thirty years. J Microsc 245, 221224.Google Scholar
Dubochet, J., Lepault, J., Freeman, R., Berriman, J.A. & Homo, J.C. (1982). Electron microscopy of frozen water and aqueous solutions. J Microsc 128, 219237.Google Scholar
Fisher, S., Wachtel, E.J., Aserin, A. & Garti, N. (2013). Colloids and surfaces B: Biointerfaces. Colloids Surf B Biointerfaces 107, 3542.Google Scholar
Frederik, P.M. & Hubert, D. (2005). Cryoelectron microscopy of liposomes. Methods Enzymol 391, 431448.Google Scholar
Frederik, P.M., Stuart, M., Bomans, P. & Busing, W.M. (1989). Phospholipid, nature's own slide and cover slip for cryo-electron microscopy. J Microsc 153, 8192.Google Scholar
Friedrich, H., Frederik, P.M., de With, G. & Sommerdijk, N.A.J.M. (2010). Imaging of self-assembled structures: Interpretation of TEM and cryo-TEM images. Angew Chem Int Ed Engl 49, 78507858.Google Scholar
Glaeser, R.M. (1971). Limitations to significant information in biological electron microscopy as a result of radiation damage. J Ultrastructure Res 36, 466482.Google Scholar
Glaeser, R.M. (2008). Retrospective: Radiation damage and its associated “information limitations.” J Struct Biol 163, 271276.Google Scholar
Grigsby, I.F., Zhang, W., Johnson, J.L., Fogarty, K.H., Chen, Y., Rawson, J.M., Crosby, A.J., Mueller, J.D. & Mansky, L.M. (2010). Biophysical analysis of HTLV-1 particles reveals novel insights into particle morphology and Gag stoichiometry. Retrovirology 7, 75.Google Scholar
Iancu, C.V., Tivol, W.F., Schooler, J.B., Dias, D.P., Henderson, G.P., Murphy, G.E., Wright, E.R., Li, Z., Yu, Z., Briegel, A., Gan, L., He, Y. & Jensen, G.J. (2006). Electron cryotomography sample preparation using the Vitrobot. Nature Protocols 1, 28132819.Google Scholar
Issman, L. & Talmon, Y. (2012). Cryo-SEM specimen preparation under controlled temperature and concentration conditions. J Microsc 246, 6069.Google Scholar
Jaskiewicz, K., Larsen, A., Schaeffel, D., Koynov, K., Lieberwirth, I., Fytas, G., Landfester, K. & Kroeger, A. (2012). Incorporation of nanoparticles into polymersomes: Size and concentration effects. ACS Nano 6, 72547262.Google Scholar
Klang, V., Matsko, N.B., Valenta, C. & Hofer, F. (2012). Electron microscopy of nanoemulsions: An essential tool for characterisation and stability assessment. Micron 43, 85103.Google Scholar
Klokkenburg, M., Houtepen, A.J., Koole, R., de Folter, J.W.J., Erne, B.H., van Faassen, E. & Vanmaekelbergh, D. (2007). Dipolar structures in colloidal dispersions of PbSe and CdSe quantum dots. Nano Lett 7, 29312936.Google Scholar
Knapek, E. & Dubochet, J. (1980). Beam damage to organic material is considerably reduced in cryo-electron microscopy. J Mol Biol 141, 147161.Google Scholar
Kumar, S., Davis, T.M., Ramanan, H., Penn, R.L. & Tsapatsis, M. (2007). Aggregative growth of silicalite-1. J Phys Chem B 111, 33983403.CrossRefGoogle ScholarPubMed
Kumar, S., Wang, Z., Penn, R.L. & Tsapatsis, M. (2008). A structural resolution cryo-TEM study of the early stages of MFI growth. J Am Chem Soc 130, 1728417286.Google Scholar
Kuntsche, J., Horst, J.C. & Bunjes, H. (2011). Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int J Pharma 417, 120137.Google Scholar
Meli, L. & Lodge, T.P. (2009). Equilibrium vs metastability: High-temperature annealing of spherical block copolymer micelles in an ionic liquid. Macromolecules 42, 580583.Google Scholar
Müller, S.A., Aebi, U. & Engel, A. (2008). What transmission electron microscopes can visualize now and in the future. J Struct Biol 163, 235245.Google Scholar
Newcomb, C.J., Moyer, T.J., Lee, S.S. & Stupp, S.I. (2012). Advances in cryogenic transmission electron microscopy for the characterization of dynamic self-assembling nanostructures. Curr Opin Colloid Interface Sci 17, 350359.Google Scholar
Oostergetel, G.T., Esselink, F.J. & Hadziioannou, G. (1995). Cryo-electron microscopy of block copolymers in an organic solvent. Langmuir 11, 37213724.Google Scholar
Penn, R.L., Erbs, J.J. & Gulliver, D.M. (2006). Controlled growth of alpha-FeOOH nanorods by exploiting-oriented aggregation. J Cryst Growth 293, 14.Google Scholar
Penn, R.L., Tanaka, K. & Erbs, J.J. (2007). Size dependent kinetics of oriented aggregation. J Cryst Growth 309, 97102.Google Scholar
Sabyrov, K., Burrows, N.D. & Penn, R.L. (2012). Size-dependent anatase to rutile phase transformation and particle growth. Chem Mater 25, 14081415.Google Scholar
Sander, B. & Golas, M.M. (2011). Visualization of bionanostructures using transmission electron microscopical techniques. Microsc Res Tech 74, 642663.Google Scholar
Shahar, C., Baram, J., Tidhar, Y., Weissman, H., Cohen, S.R., Pinkas, I. & Rybtchinski, B. (2013). Self-assembly of light-harvesting crystalline nanosheets in aqueous media. ACS Nano 7, 35473556.Google Scholar
Siegel, D.P. & Epand, R.M. (1997). The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms. Biophys J 73, 30893111.Google Scholar
Talmon, Y. (1983). Staining and drying-induced artifacts in electron microscopy of surfactant dispersions. J Colloid Interface Sci 93, 366382.Google Scholar
Talmon, Y. (1987). Electron beam radiation damage to organic and biological cryospecimens. In Cryotechniques in Biological Electron Microscopy, Steinbrecht, R.A. & Zierold, K. (Eds.), p. 297. New York: Springer-Verlag.Google Scholar
Talmon, Y. (1996). Transmission electron microscopy of complex fluids: The state of the art. Berichte der Bunsengesellschaft für physikalische Chemie 100, 364372.Google Scholar
Talmon, Y., Adrian, M. & Dubochet, J. (1986). Electron beam radiation damage to organic inclusions in vitreous, cubic, and hexagonal ice. J Microsc 141, 375384.Google Scholar
Talmon, Y. & Thomas, E.L. (1978). Electron beam heating temperature profiles in moderately thick cold stage STEM/SEM specimens. J Microsc 113, 6975.Google Scholar
Taylor, K.A. & Glaeser, R.M. (1973). Hydrophilic support films of controlled thickness and composition. Rev Sci Instrum 44, 15461547.Google Scholar
Vos, M.R., Bomans, P.H.H., Frederik, P.M. & Sommerdijk, N.A.J.M. (2008). The development of a glove-box/Vitrobot combination: Air-water interface events visualized by cryo-TEM. Ultramicroscopy 108, 14781483.Google Scholar
Weissman, H. & Rybtchinski, B. (2012). Noncovalent self-assembly in aqueous medium: Mechanistic insights from time-resolved cryogenic electron microscopy. Curr Opin Colloid Interface Sci 17, 330342.Google Scholar
Williams, D.B. & Carter, C.B. (2009). Transmission Electron Microscopy, 2nd ed. New York: Springer.Google Scholar
Won, Y.Y., Davis, H.T. & Bates, F.S. (1999). Giant wormlike rubber micelles. Science 283, 960963.Google Scholar
Wyckoff, R.W. (1946). Frozen-dried preparations for the electron microscope. Science 104, 13.Google Scholar
Yuwono, V.M., Burrows, N.D., Soltis, J.A., Do, T.A. & Penn, R.L. (2012). Aggregation of ferrihydrite nanoparticles in aqueous systems. Faraday Discuss 159, 235245.Google Scholar
Yuwono, V.M., Burrows, N.D., Soltis, J.A. & Penn, R.L. (2010). Oriented aggregation: Formation and transformation of mesocrystal intermediates revealed. J Am Chem Soc 132, 21632165.Google Scholar
Zeng, H.C. (2011). Synthesis and self-assembly of complex hollow materials. J Mater Chem 21, 75117526.Google Scholar
Zheng, Y., Lin, Z., Zakin, J.L., Talmon, Y., Davis, H.T. & Scriven, L.E. (2000). Cryo-TEM imaging the flow-induced transition from vesicles to threadlike micelles. J Phys Chem B 104, 52635271.CrossRefGoogle Scholar
Zhong, S. & Pochan, D.J. (2010). Cryogenic transmission electron microscopy for direct observation of polymer and small-molecule materials and structures in solution. Polym Rev 50, 287320.Google Scholar
Ziese, U., de Jong, K.P. & Koster, A. (2004). Electron tomography: A tool for 3D structural probing of heterogeneous catalysts at the nanometer scale. Appl Catal A: Gen 260, 7174.Google Scholar