Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T21:17:31.042Z Has data issue: false hasContentIssue false

Correlation of X-Ray Dark-Field Radiography to Mechanical Sample Properties

Published online by Cambridge University Press:  01 July 2014

Andreas Malecki
Affiliation:
Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany IMETUM Zentralinstitut für Medizintechnik, Technische Universität München, Boltzmannstraß e 11, 85748 Garching, Germany
Elena Eggl
Affiliation:
Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany IMETUM Zentralinstitut für Medizintechnik, Technische Universität München, Boltzmannstraß e 11, 85748 Garching, Germany
Florian Schaff*
Affiliation:
Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany IMETUM Zentralinstitut für Medizintechnik, Technische Universität München, Boltzmannstraß e 11, 85748 Garching, Germany
Guillaume Potdevin
Affiliation:
Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany IMETUM Zentralinstitut für Medizintechnik, Technische Universität München, Boltzmannstraß e 11, 85748 Garching, Germany
Thomas Baum
Affiliation:
Institut für Radiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Bavaria, Germany
Eduardo Grande Garcia
Affiliation:
Institut für Radiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Bavaria, Germany
Jan S. Bauer
Affiliation:
Abteilung für Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Bavaria, Germany
Franz Pfeiffer
Affiliation:
Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany IMETUM Zentralinstitut für Medizintechnik, Technische Universität München, Boltzmannstraß e 11, 85748 Garching, Germany
*
*Corresponding author. [email protected]
Get access

Abstract

The directional dark-field signal obtained with X-ray grating interferometry yields direction-dependent information about the X-ray scattering taking place inside the examined sample. It allows examination of its morphology without the requirement of resolving the micrometer size structures directly causing the scattering. The local morphology in turn gives rise to macroscopic mechanical properties of the investigated specimen. In this study, we investigate the relation between the biomechanical elasticity (Young’s modulus) and the measured directional dark-field parameters of a well-defined sample made of wood. In our proof-of-principle experiment, we found a correlation between Young’s modulus, the average dark-field signal, and the average dark-field anisotropy. Hence, we are able to show that directional dark-field imaging is a new method to predict mechanical sample properties. As grating interferometry provides absorption, phase-contrast, and dark-field data at the same time, this technique appears promising to combine imaging and mechanical testing in a single testing stage. Therefore, we believe that directional dark-field imaging will have a large impact in the materials science world.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bech, M., Bunk, O., Donath, T., Feidenhans’l, R., David, C. & Pfeiffer, F. (2010). Quantitative X-ray dark-field computed tomography. Phys Med Biol 55(18), 55295539.Google Scholar
Harrigan, T.P. & Mann, R.W. (1984). Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci 19(3), 761767.CrossRefGoogle Scholar
Jensen, T.H., Bech, M., Bunk, O., Donath, T., David, C., Feidenhans’l, R. & Pfeiffer, F. (2010 a). Directional X-ray dark-field imaging. Phys Med Biol 55(12), 33173323.Google Scholar
Jensen, T.H., Bech, M., Zanette, I., Weitkamp, T., David, C., Deyhle, H., Rutishauser, S., Reznikova, E., Mohr, J., Feidenhans’l, R. & Pfeiffer, F. (2010 b). Directional X-ray dark-field imaging of strongly ordered systems. Phys Rev B 82(21), 214103.CrossRefGoogle Scholar
Koubaa, A., Zhang, S.Y.T. & Makni, S. (2002). Defining the transition from earlywood to latewood in black spruce based on intra-ring wood density profiles from X-ray densitometry. Ann Forest Sci 59(5–6), 511518.CrossRefGoogle Scholar
Kretschmann, D.E. & Cramer, S.M. (2007). The role of earlywood and latewood properties on dimensional stability of loblolly pine. Proceedings of the Compromised Wood Workshop, Christchurch, NZ, School of Forestry, Wood Technology Research Centre, January 29–30, University of Canterbury, pp. 215–236.Google Scholar
Lynch, S.K., Pai, V., Auxier, J., Stein, A.F., Bennett, E.E., Kemble, C.K., Xiao, X., Lee, W.-K., Morgan, N.Y. & Harold Wen, H. (2011). Interpretation of dark-field contrast and particle-size selectivity in grating interferometers. Appl Opt 50(22), 43104319.CrossRefGoogle ScholarPubMed
Malecki, A., Potdevin, G., Biernath, T., Eggl, E., Grande Garcia, E., Baum, T., Noël, P.B., Bauer, J.S. & Pfeiffer, F. (2013). Coherent superposition in grating-based directional dark-field imaging. PLoS One 8(4), e61268.CrossRefGoogle ScholarPubMed
Pfeiffer, F., Bech, M., Bunk, O., Kraft, P., Eikenberry, E.F., Brönnimann, C., Grünzweig, C. & David, C. (2008). Hard-X-ray dark-field imaging using a grating interferometer. Nat Mater 7(2), 134137.CrossRefGoogle ScholarPubMed
Potdevin, G., Malecki, A., Biernath, T., Bech, M., Jensen, T.H., Feidenhans’l, R., Zanette, I., Weitkamp, T., Kenntner, J., Mohr, J., Roschger, P., Kerschnitzki, M., Wagermaier, W., Klaushofer, K., Fratzl, P. & Pfeiffer, F. (2012). X-ray vector radiography for bone micro-architecture diagnostics. Phys Med Biol 57(11), 34513461.CrossRefGoogle ScholarPubMed
Revol, V., Kottler, C., Kaufmann, R., Neels, A. & Dommann, A. (2012). Orientation-selective X-ray dark field imaging of ordered systems. J Appl Phys 112(11), 114903.CrossRefGoogle Scholar
Revol, V., Plank, B., Kaufmann, R., Kastner, J., Kottler, C. & Neels, A. (2013). Laminate fibre structure characterisation of carbon fibre-reinforced polymers by X-ray scatter dark field imaging with a grating interferometer. NDT & E International May, 6471.CrossRefGoogle Scholar
Wang, Z.-T., Kang, K.-J., Huang, Z.-F. & Chen, Z.-Q. (2009). Quantitative grating-based X-ray dark-field computed tomography. Appl Phys Lett 95(9), 094105.CrossRefGoogle Scholar
Wen, H., Bennett, E.E., Hegedus, M.M. & Rapacchi, S. (2009). Fourier X-ray scattering radiography yields bone structural information. Radiology 251(3), 910918.CrossRefGoogle ScholarPubMed
Yashiro, W., Terui, Y., Kawabata, K. & Momose, A. (2010). On the origin of visibility contrast in X-ray Talbot interferometry. Opt Expr 18(16), 1689016901.CrossRefGoogle ScholarPubMed