Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T11:39:56.683Z Has data issue: false hasContentIssue false

Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data

Published online by Cambridge University Press:  14 March 2017

Andrew J. Breen*
Affiliation:
Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006, Australia School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
Katharina Babinsky
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef Straße 18, 8700 Leoben, Austria
Alec C. Day
Affiliation:
Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006, Australia School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
K. Eder
Affiliation:
Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006, Australia School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
Connor J. Oakman
Affiliation:
Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006, Australia School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
Patrick W. Trimby
Affiliation:
Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006, Australia
Sophie Primig
Affiliation:
School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
Julie M. Cairney
Affiliation:
Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006, Australia
Simon P. Ringer*
Affiliation:
Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006, Australia School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia Australian Institute for Nanoscale Science and Technology, School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
*
*Corresponding authors.[email protected]; [email protected]
*Corresponding authors.[email protected]; [email protected]
Get access

Abstract

Correlative microscopy approaches offer synergistic solutions to many research problems. One such combination, that has been studied in limited detail, is the use of atom probe tomography (APT) and transmission Kikuchi diffraction (TKD) on the same tip specimen. By combining these two powerful microscopy techniques, the microstructure of important engineering alloys can be studied in greater detail. For the first time, the accuracy of crystallographic measurements made using APT will be independently verified using TKD. Experimental data from two atom probe tips, one a nanocrystalline Al–0.5Ag alloy specimen collected on a straight flight-path atom probe and the other a high purity Mo specimen collected on a reflectron-fitted instrument, will be compared. We find that the average minimum misorientation angle, calculated from calibrated atom probe reconstructions with two different pole combinations, deviate 0.7° and 1.4°, respectively, from the TKD results. The type of atom probe and experimental conditions appear to have some impact on this accuracy and the reconstruction and measurement procedures are likely to contribute further to degradation in angular resolution. The challenges and implications of this correlative approach will also be discussed.

Type
New Approaches and Correlative Microscopy
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araullo-Peters, V.J., Breen, A., Ceguerra, A.V., Gault, B., Ringer, S.P. & Cairney, J.M. (2015). A new systematic framework for crystallographic analysis of atom probe data. Ultramicroscopy 154(0), 714.Google Scholar
Araullo-Peters, V.J., Gault, B., Shrestha, S.L., Yao, L., Moody, M.P., Ringer, S.P. & Cairney, J.M. (2012). Atom probe crystallography: Atomic-scale 3-D orientation mapping. Scr Mater 66(11), 907910.CrossRefGoogle Scholar
Babinsky, K., De Kloe, R., Clemens, H. & Primig, S. (2014 a). A novel approach for site-specific atom probe specimen preparation by focused ion beam and transmission electron backscatter diffraction. Ultramicroscopy 144, 918.Google Scholar
Babinsky, K., Weidow, J., Knabl, W., Lorich, A., Leitner, H. & Primig, S. (2014 b). Atom probe study of grain boundary segregation in technically pure molybdenum. Mater Charact 87, 95103.CrossRefGoogle Scholar
Breen, A.J., Moody, M.P., Ceguerra, A.V., Gault, B., Araullo-Peters, V.J. & Ringer, S.P. (2015). Restoring the lattice of Si-based atom probe reconstructions for enhanced information on dopant positioning. Ultramicroscopy 159, 314323.CrossRefGoogle ScholarPubMed
Gault, B., Loi, S.T., Araullo-Peters, V.J., Stephenson, L.T., Moody, M.P., Shrestha, S.L., Marceau, R.K.W., Yao, L., Cairney, J.M. & Ringer, S.P. (2011). Dynamic reconstruction for atom probe tomography. Ultramicroscopy 111(11), 16191624.Google Scholar
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012 a). Atom probe crystallography. Mater Today 15(9), 378386.Google Scholar
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012 b). Atom Probe Microscopy. New York: Springer.CrossRefGoogle Scholar
Gault, B., Moody, M.P., de Geuser, F., Tsafnat, G., La Fontaine, A., Stephenson, L.T., Haley, D. & Ringer, S.P. (2009). Advances in the calibration of atom probe tomographic reconstruction. J Appl Phys 105(3), 034913.Google Scholar
He, M.R., Samudrala, S.K., Kim, G., Felfer, P.J., Breen, A.J., Cairney, J.M. & Gianola, D.S. (2016). Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen. Nat Commun 7, article no. 11225.CrossRefGoogle ScholarPubMed
Herbig, M., Choi, P. & Raabe, D. (2015). Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography. Ultramicroscopy 153, 3239.Google Scholar
Herbig, M., Raabe, D., Li, Y., Choi, P., Zaefferer, S. & Goto, S. (2014). Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys Rev Lett 112(12), 126103.Google Scholar
Keller, R. & Geiss, R. (2012). Transmission EBSD from 10 nm domains in a scanning electron microscope. J Microsc 245(3), 245251.Google Scholar
Larson, D.J., Prosa, T.J., Ulfig, R.M., Geiser, B.P. & Kelly, T.F. (2013). Local Electrode Atom Probe Tomography. New York: Springer Science.CrossRefGoogle Scholar
Liddicoat, P.V., Liao, X.-Z., Zhao, Y., Zhu, Y., Murashkin, M.Y., Lavernia, E.J., Valiev, R.Z. & Ringer, S.P. (2010). Nanostructural hierarchy increases the strength of aluminium alloys. Nat Commun 1, 63.Google Scholar
Miller, M.K., Cerezo, A., Hetherington, M. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford, UK: Oxford Science Publications, Clarendon Press.Google Scholar
Miller, M.K. & Forbes, R.G. (2014). Atom-Probe Tomography – The Local Electrode Atom Probe. London, UK: Springer.CrossRefGoogle Scholar
Moody, M.P., Ceguerra, A.V., Breen, A.J., Cui, X.Y., Gault, B., Stephenson, L.T., Marceau, R.K.W., Powles, R.C. & Ringer, S.P. (2014). Atomically resolved tomography to directly inform simulations for structure–property relationships. Nat Commun 5, article no. 5501.Google Scholar
Moody, M.P., Gault, B., Stephenson, L.T., Haley, D. & Ringer, S.P. (2009). Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. Ultramicroscopy 109(7), 815824.CrossRefGoogle ScholarPubMed
Primig, S., Clemens, H., Knabl, W., Lorich, A. & Stickler, R. (2015). Orientation dependent recovery and recrystallization behavior of hot-rolled molybdenum. Int J Refract Metals Hard Mater 48, 179186.CrossRefGoogle Scholar
Prior, D.J. (1999). Problems in determining the misorientation axes, for small angular misorientations, using electron backscatter diffraction in the SEM. J Microsc 195(3), 217225.Google Scholar
Randle, V. & Engler, O. (2000). Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping. Amsterdam: Gordon & Breach.CrossRefGoogle Scholar
Rice, K.P., Chen, Y., Prosa, T.J. & Larson, D.J. (2016). Implementing transmission electron backscatter diffraction for atom probe tomography. Microsc Microanal 22(3), 583588.CrossRefGoogle ScholarPubMed
Rohrer, G.S. (2011). Grain boundary energy anisotropy: A review. J Mater Sci 46(18), 58815895.CrossRefGoogle Scholar
Takahashi, J., Kawakami, K. & Kobayashi, Y. (2014). In situ determination of misorientation angle of grain boundary by field ion microscopy analysis. Ultramicroscopy 140, 2025.Google Scholar
Trimby, P.W. (2012). Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope. Ultramicroscopy 120, 1624.Google Scholar
Trimby, P.W., Cao, Y., Chen, Z., Han, S., Hemker, K.J., Lian, J., Liao, X., Rottmann, P., Samudrala, S., Sun, J., Wang, J.T., Wheeler, J. & Cairney, J.M. (2014). Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission Kikuchi diffraction in a scanning electron microscope. Acta Mater 62, 6980.Google Scholar
Vurpillot, F., Da Costa, G., Menand, A. & Blavette, D. (2001). Structural analyses in three-dimensional atom probe: A Fourier transform approach. J Microsc 203(3), 295302.Google Scholar
Vurpillot, F., Renaud, L. & Blavette, D. (2003). A new step towards the lattice reconstruction in 3DAP. Ultramicroscopy 95, 223229.Google Scholar
Yao, L. (2016). A filtering method to reveal crystalline patterns from atom probe microscopy desorption maps. MethodsX 3, 268273.CrossRefGoogle ScholarPubMed
Yao, L., Ringer, S.P., Cairney, J.M. & Miller, M.K. (2013). The anatomy of grain boundaries: Their structure and atomic-level solute distribution. Scr Mater 69(8), 622625.Google Scholar
Yen, H.-W., Ooi, S.W., Eizadjou, M., Breen, A., Huang, C.-Y., Bhadeshia, H. & Ringer, S.P. (2015). Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels. Acta Mater 82, 100114.CrossRefGoogle Scholar
Zaefferer, S. (2011). A critical review of orientation microscopy in SEM and TEM. Cryst Res Technol 46(6), 607628.Google Scholar
Supplementary material: File

Breen supplementary material

Breen supplementary material 1

Download Breen supplementary material(File)
File 3.3 MB

Breen supplementary material

Breen supplementary material 2

Download Breen supplementary material(Video)
Video 1.2 MB

Breen supplementary material

Breen supplementary material 3

Download Breen supplementary material(Video)
Video 1.2 MB