Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T00:11:54.624Z Has data issue: false hasContentIssue false

Core Shell Structures in Comparative Study of the Composition x = 0.01 (BaTi1-5xNb4xO3) Prepared by the Barium Titanate Route and the Solid-state Route

Published online by Cambridge University Press:  22 July 2022

Alberto Arenas-Flores
Affiliation:
AACTyM, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
Martín Ortiz-Domínguez*
Affiliation:
Department of Mechanical Engineering, Universidad Autónoma del Estado de Hidalgo, Ciudad Sahagún, Hidalgo, Mexico
Oscar Gómez-Vargas
Affiliation:
Postgraduate Division, Instituto Tecnológico de Tlalnepantla, Estado de México, México
José Solis-Romero
Affiliation:
Postgraduate Division, Instituto Tecnológico de Tlalnepantla, Estado de México, México
Ángel Jesús Morales-Robles
Affiliation:
AACTyM, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
Arturo Cruz-Avilés
Affiliation:
Department of Mechanical Engineering, Universidad Autónoma del Estado de Hidalgo, Ciudad Sahagún, Hidalgo, Mexico
Ángelica Viridiana Duran-Sarabia
Affiliation:
Department of Mechanical Engineering, Universidad Autónoma del Estado de Hidalgo, Ciudad Sahagún, Hidalgo, Mexico
Edgar Cardoso-Legorreta
Affiliation:
AACTyM, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
Jorge Zuno-Silva
Affiliation:
Department of Mechanical Engineering, Universidad Autónoma del Estado de Hidalgo, Ciudad Sahagún, Hidalgo, Mexico
*
*Corresponding author: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Technologists' Forum, Tutorials, and Outreach
Copyright
Copyright © Microscopy Society of America 2022

References

Wang, S., Zhang, S., Zhou, X., Li, B., Chen, Z., Mater. Lett. 60 (2006) 909-911. https://doi.org/10.1016/j.matlet.2005.10.043CrossRefGoogle Scholar
Kowalski, K., Ijjaali, M., Bak, T., Dupre, B., Nowotny, J., Rekas, M., Sorrell, C. C., J. Phys. Chem. Solids, 62 (2001) 531-535. https://doi.org/10.1016/S0022-3697(00)00211-0CrossRefGoogle Scholar
Brzozowski, E., Castro, M. S., Foschini, C. R., Stojanovic, B., Ceram. Int. 28 (2002) 773-777. https://doi.org/10.1016/S0272-8842(02)00042-1CrossRefGoogle Scholar
Barrientos Hernández, F. R., Arenas Flores, A., Cardoso Legorreta, E., Integr. Ferroelectr. 126 (2011) 1-6. https://doi.org/10.1080/10584587.2011.574963CrossRefGoogle Scholar
Barrientos Hernández, F. R., Lira Hernández, I. A., Gómez Yáñez, C., Arenas Flores, A., Cabrera Sierra, R., Pérez Labra, M., J. Alloy. Comp. 583 (2014) 587-592. https://doi.org/10.1016/j.jallcom.2013.09.016CrossRefGoogle Scholar
Lines, M. E., Glass, A. M. in “Principles and Applications of Ferroelectrics and Related MaterialsOxford University Press Editor, (Oxford, UK) p.696.Google Scholar
Saburi, O., J. Phys. Soc. Jpn. 14 (9) (1959) 1159-1174. https://doi.org/10.1143/JPSJ.14.1159CrossRefGoogle Scholar
Buessem, W. R., Kahn, M., J. Am. Ceram. Soc. 54 (9) (1971) 458-461. https://doi.org/10.1111/j.1151-2916.1971.tb12385.xCrossRefGoogle Scholar
Hennings, D. and Rosenstein, R., J. Am. Ceram. Soc. 67 (4) (1984) 249-254. https://doi.org/10.1111/j.1151-2916.1984.tb18841.xCrossRefGoogle Scholar