Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T21:26:42.494Z Has data issue: false hasContentIssue false

Co-Precipitated and Collocated Carbides and Cu-Rich Precipitates in a Fe–Cu Steel Characterized by Atom-Probe Tomography

Published online by Cambridge University Press:  25 September 2014

R. Prakash Kolli*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
David N. Seidman
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA Northwestern University Center for Atom-Probe Tomography (NUCAPT), Evanston, IL 60208, USA
*
*Corresponding Author. [email protected]
Get access

Abstract

The composition of co-precipitated and collocated NbC carbide precipitates, Fe3C iron carbide (cementite), and Cu-rich precipitates are studied experimentally by atom-probe tomography (APT). The Cu-rich precipitates located at a grain boundary (GB) are also studied. The APT results for the carbides are supplemented with computational thermodynamics predictions of composition at thermodynamic equilibrium. Two types of NbC carbide precipitates are distinguished based on their stoichiometric ratio and size. The Cu-rich precipitates at the periphery of the iron carbide and at the GB are larger than those distributed in the α-Fe (body-centered cubic) matrix, which is attributed to short-circuit diffusion of Cu along the GB. Manganese segregation is not observed at the heterophase interfaces of the Cu-rich precipitates that are located at the periphery of the iron carbide or at the GB, which is unlike those located at the edge of the NbC carbide precipitates or distributed in the α-Fe matrix. This suggests the presence of two populations of NiAl-type (B2 structure) phases at the heterophase interfaces in multicomponent Fe–Cu steels.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.

References

Ardell, A.J. (1972). On the coarsening of grain boundary precipitates. Acta Metal 20, 601609.Google Scholar
Babu, S.S., Hono, K. & Sakurai, T. (1993). APFIM studies on martensite tempering of Fe-C-Si-Mn low alloy steel. Appl Surf Sci 67, 321327.Google Scholar
Babu, S.S., Hono, K. & Sakurai, T. (1994). Atom probe field ion microscopy study of the partitioning of substitutional elements during tempering of a low-alloy steel martensite. Metal Mater Trans A 25, 499508.Google Scholar
Balluffi, R.W., Allen, S. & Carter, W.C. (2005). Kinetics of Materials. Hoboken, NJ: John Wiley & Sons.Google Scholar
Bémont, E., Cadel, E., Maugis, P. & Blavette, D. (2004). Precipitation of niobium carbides in Fe–C–Nb steel. Sur Interface Anal 36, 585588.CrossRefGoogle Scholar
Bergner, D., Khaddour, Y. & Lörx, S. (1990). Diffusion of Si in bcc- and fcc-Fe. Defect Diffus Forum 66–69, 14071412.Google Scholar
Bhadeshia, H.K.D.H. (1985). Diffusional formation of ferrite in iron and its alloys. Prog Mater Sci 29, 321386.CrossRefGoogle Scholar
Bhadeshia, H.K.D.H. & Honeycombe, R.W.K. (2006). Steels: Microstructure and Properties, Third Edition. Oxford, UK: Butterworth-Heinemann.Google Scholar
Blavette, D., Vurpillot, F., Pareige, P. & Menand, A. (2001). A model accounting for spatial overlaps in 3D atom-probe microscopy. Ultramicroscopy 89, 145153.Google Scholar
Charleux, M., Livet, F., Bley, F., Louchet, F. & Bréchet, Y. (1996). Thermal ageing of an Fe-Cu alloy: Microstructural evolution and precipitation hardening. Philos Mag A 73, 883897.Google Scholar
Czyryca, E.J., Link, R.E., Wong, R.J., Aylor, D.A., Montemarano, T.W. & Gudas, J.P. (1990). Development and certification of HSLA -100 steel for Naval Ship Construction. Nav Eng J 102, 6382.CrossRefGoogle Scholar
Danoix, F., Bémont, E., Maugis, P. & Blavette, D. (2006). Atom probe tomography I. Early stages of precipitation of NbC and NbN in ferritic steels. Adv Eng Mater 8, 12021205.Google Scholar
DeArdo, A.J. (2003). Niobium in modern steels. Int Mater Rev 48, 371402.CrossRefGoogle Scholar
Deschamps, A., Militzer, M. & Poole, W.J. (2001). Precipitation kinetics and strengthening of a Fe-0.8wt%Cu alloy. ISIJ Int 41, 196205.Google Scholar
Deschamps, A., Militzer, M. & Poole, W.J. (2003). Comparison of precipitation kinetics and strengthening in an Fe-0.8%Cu alloy and a 0.8%Cu-containing low-carbon steel. ISIJ Int 43, 18261832.Google Scholar
Dhua, S.K., Mukerjee, D. & Sarma, D.S. (2001 a). Influence of tempering on the microstructure and mechanical properties of HSLA-100 steel plates. Metal Mater Trans A 32, 22592270.Google Scholar
Dhua, S.K., Ray, A. & Sarma, D.S. (2001 b). Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels. Mater Sci Eng A 318, 197210.Google Scholar
Farren, J.D., Hunter, A.H., Dupont, J.N., Seidman, D.N., Robino, C.V. & Kozeschnik, E. (2012). Microstructural evolution and mechanical properties of fusion welds in an iron-copper-based multicomponent steel. Metal Mater Trans A 43, 41554170.Google Scholar
Fourlaris, G., Baker, A.J. & Papadimitriou, G.D. (1995). Microscopic characterisation of ε-Cu interphase precipitation in hypereutectoid Fe-C-Cu alloys. Acta Metal Mater 43, 25892604.Google Scholar
Gagliano, M.S. & Fine, M.E. (2001). Precipitation kinetics of niobium carbide and copper in a low carbon, chromium-free steel. Calphad 25, 207216.Google Scholar
Gagliano, M.S. & Fine, M.E. (2004). Characterization of the nucleation and growth behavior of copper precipitates in low-carbon steels. Metal Mater Trans A 35, 23232329.Google Scholar
Goodman, S.R., Brenner, S.S. & Low, J.R. (1973a). An FIM-atom probe study of the precipitation of copper from lron-1.4 at. pct copper. Part II: Atom probe analyses. Metal Trans 4, 23712378.Google Scholar
Goodman, S.R., Brenner, S.S. & Low, J.R. (1973b). An FIM-atom probe study of the precipitation of copper from lron-1.4 at. pct copper. Part I: Field-ion microscopy. Metal Trans 4, 23632369.CrossRefGoogle Scholar
Hillert, M. & Ågren, J. (2004). On the definitions of paraequilibrium and orthoequilibrium. Scr Mater 50, 697699.CrossRefGoogle Scholar
Hornbogen, E. & Glenn, R.C. (1960). A metallographic study of precipitation of copper from alpha iron. Trans Metal Soc AIME 218, 10641070.Google Scholar
Hoyt, J.J. (1991). On the coarsening of precipitates located on grain boundaries and dislocations. Acta Metal Mater 39, 20912098.CrossRefGoogle Scholar
Hultgren, A. (1947). Isothermal transformation of austenite. Trans ASM 39, 9151005.Google Scholar
Hunter, A.H., Farren, J.D., DuPont, J.N. & Seidman, D.N. (2013). An atom-probe tomographic study of arc welds in a multi-component high-strength low-alloy steel. Metal Mater Trans A 44, 17411759.Google Scholar
Irmer, V. & Feller-Kniepmeier, M. (1972). Diffusion of manganese in α-iron single crystals of different purity. J Phys Chem Solids 33, 21412148.CrossRefGoogle Scholar
Isheim, D., Gagliano, M.S., Fine, M.E. & Seidman, D.N. (2006 a). Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale. Acta Mater 54, 841849.CrossRefGoogle Scholar
Isheim, D., Kolli, R.P., Fine, M.E. & Seidman, D.N. (2006 b). An atom-probe tomographic study of the temporal evolution of the nanostructure of Fe–Cu based high-strength low-carbon steels. Scr Mater 55, 3540.CrossRefGoogle Scholar
Kelly, T.F. & Larson, D.J. (2012). Atom probe tomography 2012. Annu Rev Mater Res 42, 131.Google Scholar
Kolli, R.P., Mao, Z., Seidman, D.N. & Keane, D.T. (2007). Identification of a Ni0.5(Al0.5−xMnx) B2 phase at the heterophase interfaces of Cu-rich precipitates in an α-Fe matrix. Appl Phys Lett 91, 241903.Google Scholar
Kolli, R.P. & Seidman, D.N. (2007). Comparison of compositional and morphological atom-probe tomography analyses for a multicomponent Fe-Cu steel. Microsc Microanal 13, 272284.Google Scholar
Kolli, R.P. & Seidman, D.N. (2008). The temporal evolution of the decomposition of a concentrated multicomponent Fe–Cu-based steel. Acta Mater 56, 20732088.Google Scholar
Kolli, R.P. & Seidman, D.N. (2011). Coarsening kinetics of Cu-rich precipitates in a concentrated multicomponent Fe–Cu based steel. Int J Mater Res (formerly Zeitschrift fuer Metallkunde) 102, 11151124.CrossRefGoogle Scholar
Kolli, R.P., Wojes, R.M., Zaucha, S. & Seidman, D.N. (2008). A subnanoscale study of the nucleation, growth, and coarsening kinetics of Cu-rich precipitates in a multicomponent Fe–Cu based steel. Int J Mater Res (formerly Zeitschrift fuer Metallkunde) 99, 513527.Google Scholar
Kozeschnik, E., Svoboda, J., Radis, R. & Fischer, F.D. (2010). Mean-field model for the growth and coarsening of stoichiometric precipitates at grain boundaries. Model Simul Mater Sci Eng 18, 015011.CrossRefGoogle Scholar
Lee, W.-B., Hong, S.-G., Park, C.-G. & Park, S.-H. (2002). Carbide precipitation and high-temperature strength of hot-rolled high-strength, low-alloy steels containing Nb and Mo. Metal Mater Trans A 33, 16891698.Google Scholar
Leitner, H., Stiller, K., Andren, H.-O. & Danoix, F. (2004). Conventional and tomographic atom probe investigations of secondary-hardening carbides. Surf Interface Anal 36, 540545.Google Scholar
Maury, F., Lorenzelli, N., Mathon, M.H., de Novion, C.H. & Lagarde, P. (1994). Copper precipitation in FeCu, FeCuMn, and FeCuNi dilute alloys followed by X-ray absorption spectroscopy. J Phys: Condens Matter 6, 569588.Google Scholar
Miglin, M.T., Hirth, J.P., Rosenfield, A.R. & Clark, W.A.T. (1986). Microstructure of a quenched and tempered Cu-bearing high-strength low-alloy steel. Metal Trans A 17, 791798.CrossRefGoogle Scholar
Miller, M.K. (2000). Atom Probe Tomography. New York: Kluwer Academic/Plenum Publishers.Google Scholar
Miller, M.K. & Hetherington, M.G. (1991). Local magnification effects in the atom probe. Surf Sci 246, 442449.Google Scholar
Miyata, K., Kushida, T., Omura, T. & Komizo, Y. (2003). Coarsening kinetics of multicomponent MC-type carbides in high-strength low-alloy steels. Metal Mater Trans A 34, 15651573.CrossRefGoogle Scholar
Montemarano, T.W., Sack, B.P. & Gudas, J.P. (1986). High strength low alloy steels in naval construction. J Ship Prod 2, 145162.Google Scholar
Monzen, R., Jenkins, M.L. & Sutton, A.P. (2000). The bcc-to-9R martensitic transformation of Cu precipitates and the relaxation process of elastic strains in an Fe-Cu alloy. Philos Mag A 80, 711723.CrossRefGoogle Scholar
Monzen, R., Takada, K. & Matsuda, K. (2003). Coarsening kinetics of Cu particles in an Fe-1.5% Cu alloy. Int J Mater Res (formerly Zeitschrift fuer Metallkunde) 94, 12411246.Google Scholar
Monzen, R., Takada, K. & Watanabe, C. (2004). Coarsening of spherical Cu particles in an a-Fe matrix. ISIJ Int 44, 442444.CrossRefGoogle Scholar
Mulholland, M.D. & Seidman, D.N. (2009). Multiple dispersed phases in a high-strength low-carbon steel: An atom-probe tomographic and synchrotron X-ray diffraction study. Scr Mater 60, 992995.Google Scholar
Mulholland, M.D. & Seidman, D.N. (2011). Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel. Acta Mater 59, 18811897.CrossRefGoogle Scholar
Osamura, K., Okuda, H., Asano, K., Furusaka, M., Kishida, K., Kurosawa, F. & Uemori, R. (1994 a). SANS study of phase decomposition in Fe-Cu alloy with Ni and Mn addition. ISIJ Int 34, 346354.Google Scholar
Osamura, K., Okuda, H., Ochiai, S., Takashima, M., Asano, K., Furusaka, M., Kishida, K. & Kurosawa, F. (1994 b). Precipitation hardening in Fe-Cu binary and quaternary alloys. ISIJ Int 34, 359365.CrossRefGoogle Scholar
Othen, P.J., Jenkins, M.L. & Smith, G.D.W. (1994). High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe. Philos Mag A 70, 124.Google Scholar
Othen, P.J., Jenkins, M.L., Smith, G.D.W. & Phythian, W.J. (1991). Transmission electron microscope investigations of the structure of copper precipitates in thermally-aged Fe—Cu and Fe—Cu—Ni. Philos Mag Lett 64, 383391.Google Scholar
Phythian, W.J., Foreman, A.J.E., English, C.A., Buswell, J.T., Hetherington, M., Roberts, K. & Pizzini, S. (1992). The structure and hardening mechanism of copper precipitation in thermally aged or irradiated Fe-Cu and Fe-Cu-Ni model alloys. In Effects of Radiation on Materials: 15th International Symposium, Stoller, R.E., Kumar, A.S. & Gelles, D.S. (Eds.), pp. 131148. West Conshohocken, PA: ASTM International.CrossRefGoogle Scholar
Pizzini, S., Roberts, K.J., Phythian, W.J., English, C.A. & Greaves, G.N. (1990). A fluorescence EXAFS study of the structure of copper-rich precipitates in Fe–Cu and Fe–Cu–Ni alloys. Philos Mag Lett 61, 223229.Google Scholar
Salje, G. & Feller‐Kniepmeier, M. (1977). The diffusion and solubility of copper in iron. J Appl Phys 48, 18331839.Google Scholar
Seidman, D.N. (2007). Three-dimensional atom-probe tomography: Advances and applications. Annu Rev Mater Res 37, 127158.Google Scholar
Seidman, D.N. & Stiller, K. (2009). An atom-probe tomography primer. MRS Bull 34, 717724.CrossRefGoogle Scholar
Sha, W., Chang, L., Smith, G.D.W., Cheng, L.i.u. & Mittemeijer, E.J. (1992). Some aspects of atom-probe analysis of Fe-C and Fe-N systems. Surf Sci 266, 416423.Google Scholar
Speich, G.R. & Oriani, R.A. (1965). The rate of coarsening of copper precipitates in an alpha-iron matrix. Trans Metal Soc AIME 233, 623630.Google Scholar
Speight, M.V. (1968). Growth kinetics of grain-boundary precipitates. Acta Metal 16, 133135.Google Scholar
Thompson, S.W. & Krauss, G. (1996). Copper precipitation during continuous cooling and isothermal aging of A710-type steels. Metal Mater Trans A 27, 15731588.Google Scholar
Thomson, R.C. (2000). Characterization of carbides in steels using atom probe field-ion microscopy. Mater Charact 44, 219233.Google Scholar
Thomson, R.C. & Miller, M.K. (1996). An atom probe study of cementite precipitation in autotempered martensite in an Fe-Mn-C alloy. Appl Surf Sci 94–95, 313319.Google Scholar
Vaynman, S., Isheim, D., Kolli, R.P., Bhat, S.P., Seidman, D.N. & Fine, M.E. (2008). High-strength low-carbon ferritic steel containing Cu-Fe-Ni-Al-Mn precipitates. Metal Mater Trans A 39, 363373.Google Scholar
Vurpillot, F., Bostel, A. & Blavette, D. (2000). Trajectory overlaps and local magnification in three-dimensional atom probe. Appl Phys Lett 76, 31273129.Google Scholar
Wasynczuk, J.A., Fisher, R.M. & Thomas, G. (1986). Effects of copper on proeutectoid cementite precipitation. Metal Trans A 17, 21632173.CrossRefGoogle Scholar
Wen, Y.R., Hirata, A., Zhang, Z.W., Fujita, T., Liu, C.T., Jiang, J.H. & Chen, M.W. (2013). Microstructure characterization of Cu-rich nanoprecipitates in a Fe–2.5 Cu–1.5 Mn–4.0 Ni–1.0 Al multicomponent ferritic alloy. Acta Mater 61, 21332147.Google Scholar
Wilson, A.D., Hamburg, E.G., Colvin, D.J., Thompson, S.W. & Krauss, G. (1988). Properties and microstructure of copper precipitation aged plate steels. In Proceedings of Microalloying ’88, Fishman S.G. & Dhingra A.K. (Eds.), pp. 259–275. Materials Park, OH: ASM International.Google Scholar
Zhang, Z., Liu, C.T., Miller, M.K., Wang, X.-L., Wen, Y., Fujita, T., Hirata, A., Chen, M., Chen, G. & Chin, B.A. (2013). A nanoscale co-precipitation approach for property enhancement of Fe-base alloys. Sci Rep 3, 16.Google Scholar