No CrossRef data available.
Article contents
A Copper Leadframe Oxidation Investigation by Electron Energy-Loss Spectroscopy
Published online by Cambridge University Press: 02 July 2020
Extract
Copper alloys are widely used as a leadframe (chip carrier) material in plastic packaged semiconductor devices. The oxidation of Cu leadframes during the assembly process can result in poor adhesion between the moulding compound and the die-pad. This often leads to interfacial delamination and contributes to popcorn cracking during the component-board attachment process. The main cause of poor adhesion has been attributed to the weak Cu oxide(s) layer on the leadframe surface. Studies have shown that the moulding compound/leadframe adhesion decreases with increasing oxide thickness.
The aim of this investigation is to give a detailed analysis of the phase formation of a CuNiSi alloy during oxidation and to identify the locus of failure for the interfacial delamination. The Cu leadframes were oxidized in an air oven at 240° C for up to 200 min exposures before encapsulation. A scanning acoustic microscope was used to locate delamination regions along the moulding compound/leadframe interface.
- Type
- Semiconductors
- Information
- Microscopy and Microanalysis , Volume 6 , Issue S2: Proceedings: Microscopy & Microanalysis 2000, Microscopy Society of America 58th Annual Meeting, Microbeam Analysis Society 34th Annual Meeting, Microscopical Society of Canada/Societe de Microscopie de Canada 27th Annual Meeting, Philadelphia, Pennsylvania August 13-17, 2000 , August 2000 , pp. 1100 - 1101
- Copyright
- Copyright © Microscopy Society of America