Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T15:13:23.396Z Has data issue: false hasContentIssue false

The Contributions of Otto Scherzer (1909–1982) to the Development of the Electron Microscope

Published online by Cambridge University Press:  22 June 2010

Michael Marko*
Affiliation:
Wadsworth Center, Empire State Plaza, Albany, NY 12201, USA
Harald Rose
Affiliation:
University of Darmstadt, Hochschulstrasse 6, D-64289 Darmstadt, Germany
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Otto Scherzer was one of the pioneers of theoretical electron optics. He was coauthor of the first comprehensive book on electron optics and was the first to understand that round electron lenses could not be combined to correct aberrations, as is the case in light optics. He subsequently was the first to describe several alternative means to correct spherical and chromatic aberration of electron lenses. These ideas were put into practice by his laboratory and students at Darmstadt and their successors, leading to the fully corrected electron microscopes now in operation.

Type
Special Section—Aberration-Corrected Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Archard, G.D. (1955). Two new simplified systems for the correction of spherical aberration in electron lenses. Proc Roy Soc B 68, 156164.Google Scholar
Beck, V.D. (1979). A hexapole spherical aberration corrector. Optik 53, 241255.Google Scholar
Bernhard, W. (1980). Erprobung eines sphaerisch korrigierten Elektronenmikroskops. Optik 57, 7394.Google Scholar
Bertein, F. (1947). Un système correcteur en optique électronique. C R Acad Sci Paris 225, 801803.Google Scholar
Brüche, E. & Scherzer, O. (1934). Geometrische Elektronenoptik: Grundlagen und Anwendungen. Berlin: Springer.CrossRefGoogle Scholar
Crewe, A.V. (2004). Some Chicago aberrations. Microsc Microanal 10, 414419.CrossRefGoogle ScholarPubMed
Crewe, A.V. & Kopf, D. (1980). A sextupole system for the correction of spherical aberration. Optik 5, 110.Google Scholar
Deltrap, J.H.M. (1964). Correction of spherical aberration with combined quadrupole-octopole units. Proc EUREM-3, pp. 4546. Prague: Czech Society for Electron Microscopy.Google Scholar
Gabor, D. (1948). A new microscopic principle. Nature 161, 777778.CrossRefGoogle ScholarPubMed
Glaser, W. (1952). Grundlagen der Elektronenoptik. Wein: Springer.CrossRefGoogle Scholar
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B. & Urban, K. (1998). Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J Electron Microsc 47, 395405.CrossRefGoogle Scholar
Hardy, D.F. (1967). Combined magnetic and electrostatic quadrupole electron lenses. Ph.D. dissertation, University of Cambridge.Google Scholar
Hawkes, P.W. (1965). The geometrical aberrations of general electron optical systems I. The conditions imposed by symmetry. Phil Trans Royal Soc A 257, 479552.Google Scholar
Hawkes, P.W. (2001). The long road to spherical aberration correction. Biol Cell 93, 432439.Google Scholar
Hawkes, P.W. (2009). Aberration correction past and present. Phil Trans R Soc A 367, 36373664.CrossRefGoogle ScholarPubMed
Hely, H. (1982a). Technologische Voraussetzungen fuer die Verbesserung der Korrektur von Elektronenlinsen. Optik 60, 307326.Google Scholar
Hely, H. (1982b). Messungen an einem verbesserten korrigierten Elektronenmikroskop. Optik 60, 353370.Google Scholar
Hillier, J. & Ramberg, E.G. (1947). The magnetic electron microscope objective; contour phenomena and the attainment of high resolving power. J Appl Phys 18, 4871.CrossRefGoogle Scholar
Kabius, B., Hartl, P., Haider, M., Müller, H., Uhlemann, S., Loebau, U., Zach, J. & Rose, H. (2009). Aberration correction within the TEAM project. J Electron Microsc 58(3), 147155.CrossRefGoogle Scholar
Koops, H., Kuck, G. & Scherzer, O. (1977). Erprobung eines elektronenoptischen Achromators. Optik 48, 225236.Google Scholar
Krivanek, O.L., Dellby, N. & Murfitt, M.F. (2009). Aberration correction in electron microscopy. In Handbook of Charged Particle Optics, 2nd ed., Orloff, J. (Ed.), pp. 601640. Boca Raton, FL: CRC Press.Google Scholar
Krivanek, O., Dellby, N., Spence, A.J., Camps, R.A. & Brown, L.M. (1997). Aberration correction in the STEM. In Proceedings of EMAG 1997, Cambridge, UK, Rodenburg, J.M. (Ed.), pp. 3539. Bristol, UK: Institute of Physics.Google Scholar
Möllenstedt, G. (1956). Elektronenmikroskopische Bilder mit einem nach O. Scherzer sphaerisch korrigierten Objektiv. Optik 13, 209215.Google Scholar
Myers, L.M. (1939). Electron Optics, Theoretical and Practical. New York: Van Nostrand.Google Scholar
Rang, O. (1949). Der elektrostatische Stigmator, ein Korrektiv für astigmatische Elektronenlinsen. Optik 5, 518530.Google Scholar
Riecke, W.D. & Ruska, E. (1966). A 100-kV transmission electron microscope with single-field condenser objective. Proceedings of the 6th International Congress on Electron Microscopy, 1, pp. 1920. Kyoto, Japan: Japanese Society for Electron Microscopy.Google Scholar
Rose, H. (1971). Elektronenoptische Aplanate. Optik 34, 285311.Google Scholar
Rose, H. (1981). Correction of aperture aberrations in magnetic systems with threefold symmetry. Nucl Instrum Meth 187, 187199.CrossRefGoogle Scholar
Rose, H. (1990). Outline of a spherically corrected semi-aplanatic medium-voltage TEM. Optik 85, 1924.Google Scholar
Rose, H. (2008). History of direct aberration correction. In Advances in Imaging and Electron Physics, 153: Aberration-Corrected Microscopy, Hawkes, P.W. (Ed.), pp. 140. San Diego, CA: Academic Press.Google Scholar
Rose, H. (2009). Historical aspects of aberration correction. J Electron Microsc 58, 8797.CrossRefGoogle ScholarPubMed
Scherzer, O. (1932). Über die Ausstrahlung bei der Bremsung von Protonen und schnellen Elektronen. Annalen der Physik 405, 137160.CrossRefGoogle Scholar
Scherzer, O. (1936). Über einige Fehler von Elektronenlinsen. Z Phys 101(9–10), 593603.CrossRefGoogle Scholar
Scherzer, O. (1938a). Die Meßbarkeit des quadratischen Dopplereffekts. Ann Phys 424, 242244.CrossRefGoogle Scholar
Scherzer, O. (1938b). Die imaginäre Einheit in der Diracgleichung. Ann Phys 425, 593595.CrossRefGoogle Scholar
Scherzer, O. (1939a). Das Elektron im Strahlungsfeld. Ann Phys 426, 585602.CrossRefGoogle Scholar
Scherzer, O. (1939b). Das Elektron im Strahlungsfeld II. Ann Phys 427, 665670.CrossRefGoogle Scholar
Scherzer, O. (1947). Sphärische und chromatische Korrektur von Elektronenlinsen. Optik 2, 114132.Google Scholar
Scherzer, O. (1949). The theoretical resolution limit of the electron microscope. J Appl Phys 20(1), 2029.CrossRefGoogle Scholar
Scherzer, O. (1965). Vorschläge zur Terminologie unrunder Elektronenlinsen. Optik 22, 314318.Google Scholar
Scherzer, O. (1970). Die Strahlenschädigung der Objekte als Grenze für die hochauflösende Elektronenmikroskopie. Berich Bunsen Gesell 74, 11541167.CrossRefGoogle Scholar
Scherzer, O. (1978). Limitations for the resolving power of electron microscopes. Proceedings ICEM-9, 3, pp. 123129. San Francisco, CA: San Francisco Press.Google Scholar
Scherzer, O. (1980). Eine sphärisch korrigierte Folien-Linse für the Phasenmikroskopie mit Elektronen. Optik 56(2), 133147.Google Scholar
Scherzer, O. (1982). Phase tomography in the corrected electron microscope. Ultramicroscopy 9, 916.CrossRefGoogle Scholar
Seeliger, R. (1951). Die sphaerische Korrektur von Elektronenlinsen mittels nicht rotationssymmetrischer Abbildungselemente. Optik 8, 311317.Google Scholar
Sommerfeld, A. & Scherzer, O. (1934). Über das Elektronenmikroskop. Münchener medizinische Wochenschrift, 81, 18591860.Google Scholar
Tiemeijer, P.C., Bischoff, M., Freitag, B. & Kisielowski, C. (2008). Using a monochromator to improve the resolution in focal-series reconstructed TEM down to 0.5Å. In Proceedings of the European Microscopy Congress 2008, Luysberg, M., Tillmann, K. & Weirich, T. (Eds.), 1, pp. 5354. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Tretner, W. (1959). Existenzbereiche rotationssymmetrischer Elektronenlinsen. Optik 16, 155184.Google Scholar
Typke, D. (2010). Zernike phase contrast electron microscopy with a spherically corrected foil lens. Microsc Microanal 16, 441444.CrossRefGoogle ScholarPubMed
Zach, J. (1989). Design of a high-resolution low-voltage scanning electron microscope. Optik 83, 3040.Google Scholar
Zach, J. & Haider, M. (1995). Correction of spherical and chromatic aberration in a low-voltage SEM. Optik 99, 112118.Google Scholar
Zworykin, V.K., Morton, G.A., Ramberg, E.G., Hillier, J. & Vance, A.W. (1945). Electron Optics and the Electron Microscope. New York: Wiley.Google Scholar